## UNITED STATES DEPARTMENT OF AGRICULTURE WEATHER BUREAU

# MONTHLY WEATHER REVIEW

Supplement No. 46

## OBSERVATIONS OF NOCTURNAL RADIATION AT FAIRBANKS, ALASKA, AND FARGO, N. DAK.

Investigations conducted by Weather Bureau under Bankhead-Jones Special Research Fund

Submitted for Publication, June 12, 1940

QC 983 .A2.1 no.46 1941



UNITED STATES

GOVERNMENT PRINTING OFFICE

WASHINGTON: 1941

### National Oceanic and Atmospheric Administration

#### **ERRATA NOTICE**

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages
Faded or light ink
Binding intrudes into the text

This has been a co-operative project between the NOAA Central Library and the Climate Database Modernization Program, National Climate Data Center (NCDC). To view the original document, please contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x124 or <a href="www.reference@nodc.noaa.gov">www.reference@nodc.noaa.gov</a>.

LASON Imaging Contractor 12200 Kiln Court Beltsville, MD 20704-1387 March 21, 2005

| TABLE                                                                                                                                                                                             | E OF             | CONTENTS                                      |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------|-----|
| Description of instrumentsObservations at Fairbanks, AlaskaObservations at Fargo, N. DakOutgoing radiation during clear weatherComparison of observed and computed radiation during clear weather | 1<br>1<br>2<br>3 | Relation of radiation to cloudinessReferences | Pag |

## OBSERVATIONS OF NOCTURNAL RADIATION AT FAIRBANKS, ALASKA, AND FARGO, N. DAK.

By H. WEXLER

[U. S. Weather Bureau, Washington, D. C.]

During the winters of 1936-37 and 1937-38, aerological observations and measurements of outgoing radiation were made at Fairbanks, Alaska, (65°51′ N., 147°52′ W.), and Fargo, N. Dak. (46°54′ N., 96°48′ W.), as part of an investigation of the formation and structure of polar continental air. The aerological observations have been published by Byers (1940); in the present report, only the radiation measurements are considered, although the discussion involves use of the aerological data.

#### DESCRIPTION OF INSTRUMENTS

At both stations the radiation instrument used was the Abbot-Aldrich melikeron (Aldrich 1922), which is used as a compensation instrument in measuring nocturnal radiation. Two junctions of a thermocouple are connected to a galvanometer; and when the "honeycomb" cell, to which one of the junctions is attached, is shielded from radiational cooling by a shutter, the galvanometer will show a certain deflection. When the shutter is lifted, the "honeycomb" will cool, thus changing the galvanometer reading; however, by means of dry cells the "honeycomb" is heated by a current which compensates for the cooling so that the galvanometer reading remains constant. The current is measured by a milliammeter; and Q=KI², where Q is the effective outgoing radiation in gm. cal./ cm.²/min., I is the current in amperes, and K the constant of the melikeron. keron. The constant of the melikeron is determined either by computation, from the dimensions and properties of the instrument, or by direct comparison with a standard instrument. The constant for the melikeron used at Fairbanks was 3.49, and for the instrument used at Fargo was 3.90, as determined by the Smithsonian Institution during July 1936. In November 1938, the instruments were recalibrated by the Smithsonian Institution and the new constants found were 3.75 and 4.03, respectively, or increases of 7 percent and 3 percent, respectively. According to Aldrich, the change resulted from a gradual deterioration of the reflecting surface located at the bottom of the "honeycomb." The original calibration constants were used throughout in determining the outgoing radiation.

Portable mirror type galvanometers (D'Arsonval) with a sensitivity of 0.025 microamperes per mm. division, an internal resistance of 1,100 ohms, and an external critical damping resistance of 12,000 ohms, were used as zero instruments; and dry cells supplied current to the circuits; the current supplied to the "honeycomb" was measured

Observations of wind direction and velocity were made, together with measurements of snow surface temperatures and temperature of the air in the immediate neighborhood of the melikeron. The snow surface temperatures were observed by placing an alcohol thermometer horizontally on the snow with the bulb barely covered with snow. The Percentage and types of clouds, and the depth and character of the snow on the ground, as well as other meteorlogical phenomena, were also observed and recorded.

#### OBSERVATIONS AT FAIRBANKS, ALASKA

The observations at Fairbanks were begun during October 1936, and continued until March 1937, and were again resumed during the period from October 1937 to March 1938. During the first winter, the observations were made by W. B. Drawbaugh of the Weather Bureau, to whom great credit must be given for evaluating the twice daily airplane soundings as well as making the radiation measurements, often under very trying circumstances. Mr. Drawbaugh returned for the second winter and, together with L. A. Coffin, conducted a program of radiosondes, occasional airplane soundings for check purposes, and radiation measurements.

The first winter the melikeron was mounted on a pole 1.2 meters above the roof of the office, or 5 meters above the snow surface. During the second winter until January 1, 1938, it was mounted 3.8 meters above the ground, and thereafter 1.7 meters and well away from the building. Insulated wires connected the melikeron with the current-measuring instruments inside the building. Many of the measurments were made within a few hours of the time of the airplane soundings or radiosondes.

Light winds prevailed at Fairbanks during the winter and hence there was little trouble with the fluctuations in galvanometer deflection usually caused by high winds. However, considerable difficulty in securing readings was experienced because of local smoke and light fog, particularly at the lower temperatures during the winter. Lignite and wood are the usual fuels consumed at Fairbanks, and many times during the period of observations clouds of smoke drifted southward over the airport where the observatory was located. Light to dense fog very often formed at temperatures below  $-20^{\circ}$  C. and, of course, reduced the amount of outgoing radiation. The formation of hoar frost on the instrument also caused difficulty in obtaining accurate readings. The melikeron was carefully examined before readings were taken, and if frost was present the melikeron was brought inside to dry out before readings were attempted, as was also done if any blowing snow got into the instrument. Readings were abandoned on a number of occasions due to frost forming before or during observations, as any form of moisture on the instrument resulted in a reduction of outgoing radiation values and a fluctuating zero galvanometer reading. Readings taken under frosting conditions were not tabulated.

#### OBSERVATIONS AT FARGO, N. DAK.

The observations at Fargo were begun during September 1936, and continued until March 1937. They were again resumed during the period from October 1937 to March 1938.

The melikeron was mounted above the southeast corner of the airport building, 7.5 meters above the ground. The horizon surrounding the instrument was perfectly clear except for a radio mast and a revolving

beacon tower. Wires leading into the building connected the melikeron with the measuring instruments inside.

Most of the radiation measurements were made within a few hours of the time of the daily airplane soundings at Fargo, and many were made simultaneously with the soundings.

Considerable difficulty was experienced with fluctuating galvanometer readings due to prevalence of strong gusty



FIGURE 1.—Observed values of outgoing radiation during clear weather at Fairbanks, Alaska, 1936-38.

winds, as well as to blowing snow. The wandering of the galvanometer zero was caused by unequal heating or cooling by wind of the thermocouple junctions, one of which was well protected from exposure while the other was not. The galvanometer was particularly unsteady in southeast winds, which usually occurred when a warm front was nearby. This effect was probably caused by rapid temperature fluctuations brought about by mixing of the shallow cold layer of air with the much warmer air above. Some difficulty was encountered with frost forming on the melikeron surfaces, in which case no readings were attempted. When fluctuations occurred due to gusty winds, some improvement was made by insulating the lower portion of the melikeron with cotton batting, leaving the face of the instrument exposed.

#### OUTGOING RADIATION DURING CLEAR WEATHER

In figures 1 and 2, the individual values of outgoing radiation for clear weather are plotted against temperature (of the air near the melikeron) for Fairbanks and Fargo. The pronounced scattering agrees with that found by Mosby (1932) in his discussion of the Maud results, and is to be expected in view of the marked day-to-day variations of temperature and moisture content occurring aloft over the stations even when the surface conditions remain the same. If, on the other hand, the values of radiation coming from the atmosphere are found (by subtracting the outgoing radiation from the black body radiation at the temperature of the melikeron), and these values are plotted against the maximum temperature of the air aloft, then as seen in figure 5, the scattering is much less pronounced, indicating that the magnitude of the surface inversion influences greatly the value of the outgoing radiation. That the variations in moisture content are quite important is illustrated by the scattering in the latter figure.

In table 1 are shown the linear formulae found by the least squares method for Fairbanks and Fargo, as well as those for the following stations: Calm Bay, Franz-

Joseph Ld. (Berezkin, 1937); Maud Expedition; Mount Nordenskiöld, Spitsbergen (Olsson, 1936); and Fort Smith, N. W. T. (unpublished data for this station were kindly furnished by J. Patterson, Controller of the Canadian Meteorological Service).

Table 1.—Least squares formulae for outgoing radiation during clear weather (including cloudiness up to 2/10)

| Station                                                                           | Date               | Instrument                                                          | Number of<br>observations | Temperature<br>range, ° C. | Formula derived   |
|-----------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------|---------------------------|----------------------------|-------------------|
| Fairbanks, Alaska<br>(65°51' N., 147°52'<br>W., 135 m.).                          | 1936-38            | Melikeron No. 5                                                     | 358                       | -1 to -44                  | Q=0.087+0.0012t   |
| Fargo, N. Dak.<br>(46°54' N., 96°48'<br>W., 274 m.).                              | 1936-38            | Melikeron No. 4                                                     | 172                       | −5 to −35                  | Q=0.076+0.0006 t. |
|                                                                                   | 1933-35            | Savinov pyrgeom-<br>oter.                                           | 381                       | −1 to −38                  | Q=0.140+0.0007 t. |
| Fairbanks, Alaska  Maud Expedition  (Eastern portion of northern Siberian coast). | 1936-38<br>1922-25 | Melikeron No. 1<br>(some of earlier<br>observations<br>were made by |                           | -20 to -40<br>-20 to -40   |                   |
| Fort Smith, N. W. T.<br>(60°0′ N., 111°53′                                        | 1937               | Angström Pyrgeometer No. 56). Melikeron No. 6.                      | 65                        | -12 to -45                 | Q=0.062+0.0008 t. |
| W., 210 m.).  Mount Nordenskiöld, Spitsbergen (78°11' N., 15°26' E., 1049 m.).    | 1932-33            | Ångström Pyrge-<br>ometer No. 46.                                   | 192                       | near —20                   | Q=0.147.          |

The lines given by the formulae are plotted in figure 3, and show an increase in outgoing radiation with temperature. At higher temperatures Fairbanks has slightly higher values than Fargo, but this condition is reversed at temperatures below —18°. Both stations, however, have higher values than Fort Smith. For the —20° to —40° range the *Maud* and Fairbanks lines are almost parallel, although the former values are somewhat higher. Calm Bay and Mount Nordenskiöld, less than 1,300 km. apart, are in good agreement considering their difference



FIGURE 2.—Observed values of outgoing radiation during clear weather at Fargo, N. Dak., 1936-38.

in elevation and type of instrument used. The surprising difference is seen in comparing the values for Calm Bay and Mount Nordenskiöld with those of remaining stations; it cannot be explained by the use of different radiation instruments, since as Mosby points out (1932) the comparisons between the Angström pyrgeometer and the melikeron showed that the latter reads only about 4 percent lower than the former. It seems as if the explana-

tion must be sought in the different thermal structure of the atmosphere above the two groups of stations. If a smaller surface temperature inversion is found over Calm Bay and Mount Nordenskiöld than over the other stations, it would be associated with a higher value of outgoing radiation, since the outgoing radiation is the difference between the upward radiation from the ground and the downward radiation from the atmosphere, and



FIGURE 3.—Least square representations of observed outgoing radiation.

this difference diminishes as the magnitude of the surface inversion increases.

To test this hypothesis, in figure 4 the mean February temperature-height curves for the Maud (Sverdrup 1933), Franz-Joseph Land (Guterman 1938), Fairbanks (Byers 1940), and Fort Smith observations have been plotted. Actually, of course, it is not permissible to assume that the mean temperature soundings are representative of days on which radiation measurements were made. These latter days, because they are chosen for lack of clouds, will be colder at the surface than cloudy days which have been included in the mean soundings. The Maud curve, based on kite data, shows a thin surface layer of relatively steep lapse rate (since soundings could be made only in time of moderate wind) and then a marked inversion above. The difference between the maximum temperature aloft and the surface temperature is 9.6°, and agrees quite well with the mean of such differences, 10.3°, found only from those soundings made close to the time of radiation measure-The mean curve for Franz-Joseph Land shows only a slight increase in temperature from the surface to 1,000 meters and a normal lapse-rate above. However, it must be kept in mind that the radiation and aerological observations were not made at the same station on Franz-Joseph Land, nor were they made for the same period of The mean surface temperature at which the former measurements were made was -26.3°, about 10° lower than the mean surface temperature observed during the aerological soundings. Hence it cannot be definitely proved on the basis of the present data that the surface inversion at Calm Bay is smaller than that of the Maud, Fairbanks, or Fort Smith data. The Fairbanks mean sounding is nearly identical with that for Fort Smith above the surface layer. As for Mount Nordenskiöld, Olsson (1936) states that this station is above the surface inversion.

Interpreting the results, it seems that for air of recent maritime origin, such as that over Mount Nordenskiöld and Franz-Joseph Land, the outgoing radiation is large; and that when the air has achieved a quasi-radiative equilibrium with the surface, (i. e. when a large surface inversion is formed) the outgoing radiation becomes much less.

COMPARISON OF OBSERVED AND COMPUTED ATMOSPHERIC RADIATION DURING CLEAR WEATHER

In a previous paper by the author (Wexler 1936) an attempt was made to compute the radiation from a cloudless atmosphere by the simplified method introduced by Simpson (1928) and later used by Brunt (1929). Simpson was primarily interested in the absorption of the long-wave radiation by the stratosphere, which he assumed contained 0.3 mm. of precipitable water vapor and 0.06 gm. of CO<sub>2</sub> in a vertical column of 1 sq. cm. cross-sectional area. Using Hettner's determination of absorption by water vapor (in the form of steam) (1918) and Rubens-Aschkinass' CO<sub>2</sub> absorption (1898), Simpson was able to find the absorption spectrum of the stratosphere, which he showed coluld be divided into three spectral regions: (1) nearly complete absorption in the regions  $5\frac{1}{2}$ — $7\mu$  and for wave lengths greater than  $14\mu$ , called "opaque" bands; (2) semitransparency in the bands 4-5½µ, 7-8½µ, and 11-14 $\mu$ ; and (3) transparency in the region  $8\frac{1}{2}-11\mu$ . Brunt later applied this same analysis to tropospheric radiation; he assumed that layers of air containing 0.3 mm. of precipitable water would absorb and transmit radiation according to Simpson's classification. However, in the troposphere such layers are very thin and do not contain 0.06 gm. CO<sub>2</sub>, which Simpson assumed to be present in the stratosphere, and which was highly important because it decreased the lower limit of the complete absorption band from  $20\mu$ , the value when water vapor alone was present, to  $14\mu^2$ .

Hence, the application of Simpson's work to tropospheric radiation implies a large value of absorption and emission,



FIGURE 4.-Mean February temperature-height curves.

both because of use of absorption constants determined by steam instead of water vapor at atmospheric temperatures, and because of assuming an abnormal amount of CO<sub>2</sub> to be present in tropospheric air. Consequently

<sup>&</sup>lt;sup>1</sup> These data are soon to be published by the Canadian Meteorological Service.

<sup>&</sup>lt;sup>2</sup> Because of the diffuse nature of radiation the mean path of the radiation will include approximately twice the amount of absorbing gas; thus diffuse radiation passing through a layer, each of whose unit columns contains 0.15 mm. H<sub>2</sub>O and 0.03 gm. CO<sub>2</sub> will be absorbed in approximately the same proportion as a parallel beam passing through a layer each of whose unit columns contains 0.30 mm. H<sub>2</sub>O and 0.06 gm. CO<sub>2</sub>.

another model was set up based on absorption coefficients determined by Weber and Randall (1932) using water vapor at room temperatures. These coefficients were so much lower than those of Hettner's, that in order to estimate the atmospheric absorption and emission in the manner used by Simpson, it was necessary to increase the thickness of the layers so that each contained 1 millimeter of precipitable water instead of 0.15 mm. If this were not done, the semitransparent bands would increase in width at the expense of the opaque bands and it would be impossible to estimate the amount of energy contained in them in the simple manner outlined by Simpson for the

perature of any layer of air containing 1 mm. of precipitable rater and normal CO<sub>2</sub> content.

This diagram was used to find the magnitude of surface inversions formed over a snow surface in absence of sun and of wind movement. As was shown, the cooling proceeds in such a way as to create an isothermal layer above a large surface inversion, and the top of this isothermal layer represents the top of the true polar continental air. All evidence, such as the magnitudes of the inversions, rate of cooling, observed structure of polar continental air, analysis of Olsson's radiation measurements at Mount Nordenskiöld, etc., (Wexler 1936,



FIGURE 5.—Theoretical radiation compared with observed values.

case of narrow semitransparent bands. Another very important consideration was the assumption of normal CO<sub>2</sub> content in layers; this decreased the absorption in the important band  $14-17\mu$ , so that this region became semitransparent instead of opaque. The new spectral limits of the 3 bands now become: (1) Opaque  $5\frac{1}{2}-7\mu$ ,  $> 17\mu$ ; (2) semitransparent  $4-5\frac{1}{2}\mu$ ,  $7-8\frac{1}{2}\mu$ ,  $13-7\mu$  and (3) transparent  $8\frac{1}{2}-13\mu$ .

The two models, one showing large absorptivity and the other small absorptivity, were both used in the previous paper (Wexler 1936, fig 4) to determine the radiation coming from a moist atmosphere. In this diagram, the curves of which are reproduced here in figure 5, the abscissa represents the following temperatures, according to which of the 3 curves is referred to: Curve (a), temperature of the ground or snow surface, which is assumed to radiate as a black body; (b), the highest mean temperature of any layer of air containing 0.15 mm. precipitable water and high CO<sub>2</sub> content, and (c) the highest mean tem1937) seemed to favor curve (c) over curve (b) as representing the atmospheric radiation.

Now the simultaneous aerological and radiation data at Fairbanks and Fargo afford a direct check of curves (b) and (c), in either of two ways: First, by plotting the observed values of atmospheric radiation against temperature of the isothermal layer when the latter can be determined from the aerological soundings; or, secondly, by plotting the values of atmospheric radiation against mean temperature of the surface layer of air containing 0.15 mm. of precipitable H<sub>2</sub>O in one diagram to check curve (b), and plotting the same values of radiation against mean temperature of the surface layer of air containing 1 mm. of precipitable H<sub>2</sub>O in another diagram to check (c). Both these methods have been followed, and the results are shown in figures 5, 6, and 7; however, for reasons to be mentioned below, neither method is quite satisfactory.

The ideal structure of polar continental air, that is, a marked surface inversion in a very thin layer, overlain by an isothermal layer, above which is found the normal lapse-rate, is not observed in all soundings made in this type of air. Various effects such as the wind-stirring of

It can easily be shown that for errors of +7 percent and +3 percent, caused by changes in the calibration constants at Fairbanks and Fargo, respectively, the percent error in atmospheric radiation will in general be less than -3.5 percent and -1.8 percent, respectively.

surface layers, different histories of various layers of air, possible radiative cooling from the lower layers directly to space, etc., obscure the ideal pattern and render difficult at times the identification of the isothermal layer. The values plotted in figure 5 are taken only from soundings where the isothermal layer was easily identified. From the soundings made during the winters of 1936–38 at Fairbanks and Fargo, only 54 such cases were observed during which radiation measurements were also available. The results are in agreement with those found from the first winter's observations at Fairbanks and Fargo (Wexler

first winter's observations at Fairbanks and Fargo (Wexler 1937; the 48 points referred to in this paper were considerably reduced in number by demanding closer adherence of

ground, and this fact will be especially true of the layer containing 0.15 mm. These cold surface layers will not ordinarily be in radiative equilibrium, since they will be subjected to radiation coming from the ground and from the warmer layer of air above it. Consequently if radiative influences alone were considered, the temperature of this surface layer would increase until it reached the equilibrium value. However, other and nonradiative influences prevent the attainment of equilibrium temperatures in the surface layer. Hence, in figures 6 and 7 the points are displaced too far to the left. In both figures the points are closer to their respective curves at low temperatures and depart from them at higher tempera-



FIGURE 6.—Theoretical radiation compared with observed values.

the soundings used to the ideal temperature distribution). At temperatures between  $-30^{\circ}$  C. and  $-20^{\circ}$  C., the Points are located near (c), and for temperatures between  $-20^{\circ}$  C. and about  $-30^{\circ}$  C. they are found between (c) and (b) while for higher temperatures they are grouped around (b), and the few points whose temperatures are greater than  $10^{\circ}$  C. are found between (a) and (b). Some of the values of the atmospheric radiation are undoubtedly too large, since 2/10 clouds and also local smoke and light fog were included in the clear weather observations in order to provide a larger number.

The second method used to check curves (b) and (c) was to plot all clear weather atmospheric radiation measurements (including 2/10 clouds, light fog and smoke) against mean temperatures of surface layers of air containing 0.15 mm. and 1 mm., respectively, of precipitable H<sub>2</sub>O, and is open to error in the following way: Since the surface temperature inversion layer is usually several hundred meters thick, the mean temperatures of layers containing the above amounts of precipitable H<sub>2</sub>O are almost always several degrees too low compared with the mean temperatures of such layers located at greater heights above the

tures as was noticed also in figure 5. The points are grouped closer to curve (b) than to (c), although at low temperatures there are a considerable number of points below (b).

Recently, Elsasser has devised a radiation diagram 4 based on the water vapor absorption coefficients of Weber and Randall. This diagram, which enables one to compute the radiation flux in an atmosphere of known temperature and moisture distribution, is similar to an earlier one by Mügge and Möller (1932) who used the Hettner steam absorption coefficients as reduced by Albrecht (1930) by comparison with Fowle's measurements (1917). In testing the latter diagram against observations, a large discrepancy was discovered which led to the conclusion that even the reduced Hettner coefficients were unsuited for atmospheric radiation computations and that they give too large values for atmospheric absorptivity or emissivity. In a later paper (1935), Möller attempted to overcome this difficulty by "opening-up" the water vapor absorption spectrum in an empirical manner, thus rendering the atmosphere more transparent to longwave radiation. In 4 The manuscript describing the preparation of this diagram is as yet unpublished.

this way the necessity for having the major portion of the radiation leaving the atmosphere directly to space from the upper portion of the troposphere—or from the so-called "emission layer"—was overcome. Thus the layer of maximum cooling by radiation was brought down from the upper troposphere to the surface layers, which was in better agreement with meteorological evidence (Wexler 1936, 1937).

The Weber-Randall coefficients used by Elsasser showed that as expected the atmosphere actually was more transparent to long-wave radiation than was indicated by the first Mügge-Möller diagram. In fact, the distribution of at-

of the curve and whose upper portions follow the original convective equilibrium curve. As described in an earlier paper (Wexler 1936), the transformation of air with an originally steep lapse-rate into polar continental air is thought to take place in such a manner that as radiative cooling from below proceeds, an increasingly thick isothermal layer is found above a large surface inversion of very small thickness. It is the balance of the upward radiation from the surface and the downward radiation from the atmosphere that determines the magnitude of the inversion. In curves (b), and (c) of figure 5, as stated earlier, the coldest type of saturated polar mari-



FIGURE 7.—Theoretical radiation compared with observed values.

mospheric cooling by radiation found by use of the Elsasser diagram and the second Mügge-Möller diagram agree so closely that it seems as if Möller's empirical "opening-up" of the absorption spectrum was quite successful.

In the following the Elsasser diagram will be used in two ways: first, to test whether curve (b) or (c) of figure 5 represents more accurately the radiation coming downward from ideal polar continental atmospheres of various temperatures; and, secondly, to compare the observed outgoing radiation values with those computed by means of the aerological soundings made at the same time.

Curve (d) in figure 5 has been computed by use of the Elsasser diagram in the following way: the radiation coming from a saturated atmosphere in convective equilibrium with an ocean surface of  $0^{\circ}$  C. is designated by the ordinate of the extreme right-hand point of curve (d), while the ordinates of other points of this curve refer to the radiation coming from atmospheres whose lower portions are isothermal at temperatures corresponding to the abscissae

time atmosphere was assumed to be the initial atmosphere before cooling took place. Curve (d) agrees quite closely with (c) at higher temperatures and falls below it at lower temperatures. Another curve (e), has been computed for atmospheres of similar lapse-rates but of only 50 percent relative humidity throughout; this curve falls below (d) at higher temperatures but becomes practically coincident with it at lower temperatures. By use of (a) and (d), it is seen that the magnitude of the surface inversions under quasi-radiative equilibrium at lower temperatures will be greater than those found by means of (a) and (c).

However, the quite good agreement of (c) and (d) in the temperature range 253° to 273° represents the most important fact to be derived from figure 5, since most isothermal layers in polar continental air have their temperatures within this range. To compare the ideal magnitude of the quasi-radiative equilibrium inversions, table 2 has been prepared for the two curves, (c) and (d).

Table 2.—Comparison of ideal inversions as found from curves (c) and (d), figure 5

| Surface<br>tempera-<br>ture | Isothermal<br>tempera-<br>ture<br>(curve c) | Isothermal<br>tempera-<br>ture<br>(curve d) |
|-----------------------------|---------------------------------------------|---------------------------------------------|
| °C.                         | °C.                                         | °C.                                         |
| -30                         | +4                                          | +2                                          |
| -40                         | -9                                          | -9                                          |
| -50                         | -21                                         | -16                                         |
| -60                         | -34                                         | -24                                         |
| -70                         | -47                                         | -30                                         |

The round points in figure 5, which represent the values of atmospheric radiation plotted against temperature of the isothermal layer for selected cases when these were well marked, are practically all above (d); this disagreement will be analyzed more thoroughly below.

To check the Elsasser diagram against observations, it was required that only data be used when two or more closely agreeing radiation measurements were made within a few hours of an aerological sounding. These conditions were met at Fairbanks only during the first winter, and at Fargo for both winters. For each sounding, two calculations on the Elsasser diagram were carried out, one for the observed moisture distribution, and the other for the moisture distribution corresponding to saturation throughout the sounding. The results are summarized in table 3, where the subscripts in column 1 refer to the number of days observations used.

Table 3.—Comparison of observed and computed outgoing radiation intensities

[IInits in am cal lom 2/min]

| 1                  | O mes m gm. car./o                        |                         |                                        |
|--------------------|-------------------------------------------|-------------------------|----------------------------------------|
| Station            | Observed                                  | Computed                | Computed<br>(assuming satu-<br>ration) |
| Fairbanks<br>Fargo | 0.076 <sub>13</sub><br>.076 <sub>38</sub> | 0.110(45%)<br>.119(58%) | 0.086(13%)<br>.089(17%)                |

The mean observed values for the two stations agree quite closely, while the computed values are about 50 Percent too large, and even the values found when saturation is assumed for each sounding are too large by about 15 percent.

To show more clearly the difference between the observed and the computed values of the outgoing radiation, these values have been plotted in figure 8, where the abscissa is the difference between the maximum temperature observed aloft and the temperature of the air near the melikeron. The three sets of points fall for the most part on rather smooth curves, which show the expected drop in intensity with an increase in the magnitude of the temperature inversion. There is an almost constant difference of about 0.035 gm. cal./cm²/min. between the computed and the observed curves, while the curve computed on the basis of 100 percent relative humidity throughout is closer to the observed curve and drops below it at  $\Delta T = 15^{\circ}$ . An attempt at a similar representation for Fargo did not show such a smooth array of points, although the same general trends of the curves in figure 8 were present.

The possible explanations for the discrepancy between observed and computed values are discussed below:

(a) Presence of radiating gases in the atmosphere other than water vapor.—Carbon dioxide (13-16 $\mu$ ) and ozone (9.3-10.1 $\mu$ ) are the only other gases that have important radiating bands in the long-wave region. Elsasser's dia-

gram takes into account the radiation from the CO<sub>2</sub>, all of which is assumed to originate in the lowest 200 meters of air; however, when a sharp ground inversion exists, a correction must be made for the increased CO<sub>2</sub> radiation caused by the higher temperature of the gas. In an unpublished paper, Elsasser has shown how to make this correction, and it turns out to be quite small when applied to the computed values, amounting to no more than a few percent. This correction which tends to decrease the computed values has already been made in the values shown in columns 2 and 3 of table 3. According to Adel (1939), the ozone band at 9.3-10.1 µ has about 50 percent absorptivity for normal values of atmospheric ozone, which seems to be quite large compared to Hettner's determination. Assuming the ozone to have a mean temperature of  $-38^{\circ}$ C the additional radiation sent down by the atmosphere amounts to about 0.005 gm. cal./cm.2/min.; this over-all correction has also been made in the computed values shown in columns 2 and 3.

(b) Inaccuracy of the melikeron and errors in observation.—Both instruments were calibrated at the Smithsonian Institution in July 1936 and again in November



FIGURE 8.—Theoretical radiation compared with observed values.

1938, and, as mentioned before, the calibration constant, K, increased by 7 percent and 3 percent for the Fairbanks and the Fargo instruments, respectively. The earlier calibration constants were used throughout in the determinations of the outgoing radiation intensities, since most of the reduction of the data had been completed before the second calibration was made. If the larger constants had been used, then the values in column 1 of table 3 would have been 0.081 and 0.078 gm. cal./cm.2/ min. for Fairbanks and Fargo, respectively, and the computed values would have still been much different from the observed values, 36 percent and 53 percent, respectively. Also as mentioned before, one of the early models of the melikeron was compared with the Angström in actual field measurements and read only about 4 percent lower than the latter instrument. Frost deposits on the melikeron during observations can seriously affect the readings when one realizes that the deposit of a frost film of only 0.0001 cm. thick in one minute will yield an amount of heat which will compensate for the normal heat loss caused by the outgoing radiation in polar regions. The observers were warned about this source of error; and some observations, especially at Fairbanks, were abandoned because the observer could see the formation of frost or could detect it by the steady decline of his ammeter reading during successive observations. The appearance of such erroneous readings in table 3 is eliminated by the requirement that those selected were based on two or more

closely agreeing successive observations.

(c) Inaccuracy of the Elsasser radiation diagram.—This error is difficult to determine, since it can be done only by comparison with laboratory and field measurements. In his unpublished manuscript, Elsasser claims that his computations are supported by measurements made by Strong of California Institute of Technology, who by means of a "residual ray" instrument is able to measure atmospheric infrared radiation at various bands (1939). Also he cites as support, measurements of water vapor absorption coefficients made by Adel (1939), who meas-



FIGURE 9.—Relation of atmospheric radiation to cloudiness.

ured the absorption of solar radiation by atmospheric water vapor. Recently F. A. Brooks, working with thin layers in the laboratory of Hottel at Massachusetts Institute of Technology, found that the measurements were not in accord with those computed on the diagram, and Elsasser admits that his diagram is probably not accurate for thin layers (of the order of 5–10 meters) but is satisfactory for thicker layers. Since the computations here involve the radiation coming from the entire atmosphere, this latter objection is of no consequence.

(d) Presence of solid particles in the atmosphere.—The existence of the large surface inversion over polar regions,



FIGURE 10.—Relation of atmospheric radiation to cloudiness.

with practically calm conditions, would favor the concentration of small solid particles in the surface layers of air, not only because of the formation of ice crystals at low temperatures, but also because the strong vertical stability of the atmosphere would prevent upward vertical diffusion of solid particles where they could then be carried away by the stronger winds aloft. It does not seem possible to estimate the effect of such solid particles, each presumably radiating as a black body, without some observations concerning concentration. However, F. A. Brooks, in a conversation with the author, told how a California fruit orchard smoke cloud, produced by smudge-pots, reduced the outgoing radiation by 40 percent. Accepting this value as typical of a very large

concentration of soot particles, the effect of a much smaller concentration of ice and other particles on the outgoing radiation would seem to be much smaller than 40 percent. The values in column 1 of table 3 are about 30 to 40 percent smaller than those in column 2; if we accept the latter values as the correct ones then the apparent 30 to 40 percent reduction would seem to be much too large in view of the very much smaller concentration of solid particles in the polar regions as compared with that in orchard smoke-clouds. Finally, it should also be pointed out that not all observations at Fargo were made under conditions of strong inversions; several were made when rather steep lapse-rates prevailed in the surface layers, and yet not one case was observed when the computed values of the outgoing radiation equalled the observed value.

Unfortunately, it is not possible to compare the computed and the observed radiation values for the *Maud*, since the soundings were only about 1,500 meters high; and it is likewise impossible to compare those for Franz-Joseph Land and Mount Nordenskiöld because of lack of soundings simultaneous with the radiation measurements.

Although no definite conclusion has been reached concerning the discrepancy between computed and observed values for Fairbanks and Fargo, it is hoped that other investigations will be made to see whether in Polar and in other atmospheres there exist additional constituents—gaseous or solid—which reduce the outgoing radiation more than would be expected from the presence only of water vapor, plus small amounts of carbon dioxide and ozone.

#### RELATION OF ATMOSPHERIC RADIATION TO CLOUDINESS

In figures 9 and 10 are plotted values of atmospheric radiation against cloud amount, for Fairbanks and Fargo, respectively. Because of the sparseness of the data, no attempt was made to prepare such diagrams for each cloud type; even when all cloud types are grouped together, the scarcity of the observations is evident in the jagged character of the curves. The straight lines found by the least-square method show the expected increase in atmospheric radiation with cloud amount. For Fairbanks and Fargo, respectively, the equations of these lines are:

$$R_A = 0.265 (1 + 0.031 M),$$

$$R_A = 0.319 (1 + 0.013 M),$$

where  $R_A$  is the atmospheric radiation, and M is the cloud amount in tenths of the sky covered.

For each cloud amount, the atmospheric radiation is greater at Fargo than at Fairbanks, thus indicating that the clouds over Fairbanks are either at a lower temperature or are less dense than those over Fargo; that the latter may be the case is borne out by the pilot of the Fairbanks aerological airplane, who noted exceptionally good vertical and oblique visibilities through clouds that from the ground, might have been expected to be quite opaque. The apparent decrease northward in cloud density has been noted by Olsson (1936), who compared the Mount Nordenskiöld observations with those made at lower latitudes by Angström. These two investigators plotted cloud amount against the outgoing radiation, instead of the atmospheric radiation. However, it seems that use of the latter quantity would eliminate the effect of surface temperature, since for the same value of atmospheric radiation the surface having the lower temperature will

have the smaller amount of outgoing radiation. Once the value of the surface temperature is given, then figures 9 and 10 may be used to give the approximate dependency of outgoing radiation on cloud amount for the two stations in winter.

#### REFERENCES

Adel, A. 1939. Atmospheric Absorption of Infrared Solar Radiation at the Lowell Observatory. Astrophys. J. Vol. 89, p. 1.

Albrecht, F. 1930. Der Wärmeumsatz durch die Wärmestrahlung

des Wasserdampfes in der Atmosphäre. Zeitschr. f. Geophy.

des Wasserdampfes in der Atmosphäre. Zeitschr. f. Geophy. Vol. 6, p. 420.

Aldrich, L. B. 1922. The Melikeron—An Approximately Black-Body Pyranometer. Smithsonian Misc. Coll. Vol. 72, No. 13.

Berezkin, V. A. 1937. Actinometrical Observations at Calm Bay (Franz-Joseph Land) and Lonely Island. Pt. I. Trans. Arctic Inst., Vol. LXXX.

Brunt, D. 1929. The Transfer of Heat by Radiation and Turbulence in the Lower Atmosphere. Proc. Roy. Soc. Vol. A 124, p. 201.

Byers, H. R. 1940. Data from Aerological Soundings at Fairbanks, Alaska During the Winters 1936—37 and 1937—38. Mo. Wen.

Alaska, During the Winters 1936-37 and 1937-38. Mo. Wea.

Rev. Supp. No. 40.
Elsasser, W. M. Unpub. On Radiative Cooling in the Lower Atmosphere. Mo. Wea. Rev.
Fowle, F. E. 1917. Water Vapor Transparency to Low Temperature Professional Straight Mice. Coll. Vol. 68, No. 8

ture Radiation. Smith. Misc. Coll. Vol. 68, No. 8.

Guterman, I. G. 1938. Vertical Temperature Gradients above Franz-Joseph Land. Meteorologia I. Hydrologia. No. 6, page 56. (Data reproduced in Bull. Amer. Met. Soc., Vol. 19, No. 9.)

Hettner, G. 1918. Über das Ultrarote Absorptionspecktrum des Wasserdampfes. Ann. d. Physik, Vol. 55, p. 476.

Wasserdamples. Ann. d. Filysik, vol. 53, p. 470.

Möller, F. 1935. Die Wärmequellen in der freien Atmosphäre.

Meteorol. Z. Vol. 52, p. 408.

Mosby, H. 1932. Sunshine and Radiation, Norwegian No. Polar

Exped. with the "Maud" 1918-25. Scientific Results, Vol. I,

No. 7. Bergen.

Musca B. and Mäller E. 1932. Zur Rerechnung von Strahlungs-No. 7. Bergen. Mugge, R. and Möller, F. 1932. Zur Berechnung von Strahlungs-

strömen und Temperatureänderungen in Atmosphären von belie-bigen Aufbau. Zeitschr. f. Geophy. Vol. 8, p. 53.

Olsson, H. 1936. Sunshine and Radiation, Mount Nordenskiöld, Spitzbergen. Geog. Ann. H. 1.

Spitzbergen. Geog. Ann. H. 1.
Rubens, H. and Aschkinass, E. 1898. Beobachtungen über Absorption und Emission von Wasserdampf und Kohlensaüre in ultrarothen Spektrum. Ann. d. Phys., u. Chem., Vol. 64, p. 584.
Simpson, G. C. 1928. Further Studies in Terrestrial Radiation. Mem. Roy. Met. Soc., Vol. III, No. 21.
Strong, J. 1939. A New Radiation Pyrometer. J. Opt. Soc. Am. Vol. 29, p. 520.
Sverdrup, H. U. 1933. Meteorology, Pt. I, Discussion, Norwegian North Polar Exped. with the "Maud," Scientific Results, Vol. II, Bergen

Bergen.

Weber, L. R. and Randall, H. M. 1932. Absorption Spectrum of Water Vapor Beyond 10µ. Phys. Rev., Vol. 40, p. 835.

Wexler, H. 1936. Cooling in the Lower Atmosphere and the Structure of Polar Continental Air. Mon. Wes. Rev., Vol. 64, p. 122. Wexler, H. 1937. Absorption of Radiation by Water Vapor as Determined by Hettner and Weber and Randall. Mon. Wes. Rev., Vol. 65, p. 102.

#### TABLES OF OBSERVATIONAL DATA

Tables 4 and 5 show the outgoing radiation measurements (Q) for Fairbanks, Alaska, and Fargo, N. Dak. Each table is divided into three parts: 0-2/10 cloudiness, 3/10-6/10 cloudiness, and 7/10-10/10 cloudiness. The time is local time. Radiation units are gm. cal./cm.2/min. The temperature (t) refers to that of the air in the immediate neighborhood of the melikeron. The symbols in the cloudiness column have the following meanings: S, light smoke; S +, dense smoke; =, light fog;  $\equiv$ , dense fog. The abbreviations for character of the snow surface are: NL for new light; OL for old light; ND for new dense; OD for old dense; NC for new crusted; OC for old crusted; and OG for old granular. The snow surface temperatures were determined by placing an alcohol thermometer horizontally on the snow, the bulb being barely covered by the snow.

Table 4.—Outgoing radiation, Fairbanks, Alaska PART I.-0-2/10 CLOUDINESS

|                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0-2/10 O.L.C                                                                                                                                                                                           |                |           |                             |                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|-----------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                         | ď              | loudiness | Wind, direc-                |                                            | Snow surface                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date                                                                                                                                             | Local time                                                                                                                                                                                                                             | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t.                                                                                                                                                                                                      | Amount         | Kind      | tion—velocity<br>(m. p. s.) | Depth<br>(cm.)                             | Character of top layer                   | Tempera-<br>ture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1936  Oct. 6 Oct. 7 Oct. 8 Oct. 29 Nov. 5  Nov. 18 Nov. 27  Nov. 28  Nov. 29 Dec. 1  Dec. 3 Dec. 4 Dec. 6 Dec. 6 Dec. 16 Dec. 18 Dec. 18 Dec. 19 | 06:30<br>07:00<br>07:30<br>09:00<br>08:30<br>09:00<br>10:00<br>10:00<br>10:00<br>17:00<br>17:00<br>18:10<br>20:15<br>23:15<br>08:30<br>09:30<br>09:30<br>09:30<br>09:30<br>10:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>22:35 | Gm. cal./ cm.*/min. 0. 107 0.800 0.82 0.79 0.79 1.02 1.01 0.703 0.68 0.055 0.42 0.47 0.73 0.68 0.603 0.604 0.603 0.604 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0 | °C9.5 -10.0 -10.1 -18.6 -11.6 -11.6 -11.2.5 -14.3 -14.3 -14.3 -14.3 -14.8 -16.4 -21.6 -21.0 -11.4 -11.5 -27.9 -28.0 -30.5 -30.5 -30.7 -31.4 -30.5 -32.0 -32.5 -36.8 -36.5 -36.8 -41.2 -41.3 -41.1 -38.8 | S=<br>S=<br>S= | A. St     | K                           | 3 3 3 3 2 2 2 3 3 5 5 5 28 22 5 25 22 5 22 | NNNOONNOOOOOOOOONNNNNNOOOOOOOONNNNNOOOOO | °C11.7 -11.9 -25.3 -25.6 -18.8 -17.0 -18.8 -17.0 -18.8 -17.7 -10.7 -20.0 -26.0 -26.0 -21.0 -26.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 |

## TABLE 4.—Outgoing radiation, Fairbanks, Alaska—Continued PART I.—0-2/10 CLOUDINESS—Continued

|                 | T 00-7 4'                                                                     |                                                                               |                                                                                                              | C                                                | loudiness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wind, direc-                                                                | Snow surface                                         |                                            |                                                                    |
|-----------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------|
| Date            | Local time                                                                    | Q.<br>                                                                        | t.                                                                                                           | Amount                                           | Kind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (m. p. s.)                                                                  | Depth<br>(cm.)                                       | Character<br>of top layer                  | Tempera-<br>ture                                                   |
| 1936<br>Dec. 21 | 01:15<br>10:00<br>10:45<br>22:30<br>23:30                                     | Gm./ca./<br>cm.²/mm.<br>0.035<br>.042<br>.061<br>.040<br>.038                 | $   \begin{array}{r}     -35.6 \\     -39.8 \\     -39.2 \\     -41.7 \\     -42.2   \end{array} $           | <i>ធធធធធ</i> ធ                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NW-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0                                  | 41<br>41<br>41<br>41<br>41                           | OL<br>OL<br>OL<br>OL                       | °C.<br>-42.<br>-44.<br>-44.<br>-45.<br>-14.                        |
| Dec. 23         | 09:00<br>09:30<br>04:00<br>05:00<br>09:00<br>08:20<br>08:50                   | .030<br>.030<br>.038<br>.038<br>.016<br>.035                                  | -35.6<br>-35.8<br>-34.2<br>-33.8<br>-32.2<br>-27.6<br>-27.6                                                  | 8<br>8<br>0<br>0<br>1<br>1                       | A. St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C<br>C<br>C<br>N-1.0<br>N-1.0<br>C                                          | 41<br>41<br>41<br>41<br>41<br>41                     | OL<br>OL<br>OL<br>OL<br>OL                 | 37.<br>37.<br>39.<br>39.<br>35.<br>33.                             |
| nn. 8           | 09:00<br>00:30<br>01:30<br>18:00<br>22:00<br>07:30<br>08:15<br>08:45          | . 084<br>. 045<br>. 016<br>. 044<br>. 096<br>. 100<br>. 106                   | -17. 0<br>-7. 5<br>-7. 7<br>-4. 1<br>-10. 8<br>-11. 9<br>-13. 0<br>-11. 4                                    | 1<br>2<br>2<br>2<br>0<br>1<br>1                  | St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NE-1.0<br>W-1.0<br>C<br>SW-1.8<br>SE-1.0<br>W-2.7<br>SW-3.6<br>SW-3.6       | 53<br>69<br>69<br>71<br>56<br>56<br>56               | NL<br>NL<br>NL<br>OD<br>OD<br>OD           | -22.<br>-12.<br>-10.<br>-10.<br>-17.<br>-16.<br>-17.               |
| an, 18an, 22    | 09:30<br>23:45<br>01:00<br>02:00<br>16:00<br>17:00<br>20:30<br>22:00<br>23:30 | . 069<br>. 046<br>. 046<br>. 050<br>. 101<br>. 074<br>. 058<br>. 066          | -10.4<br>-25.4<br>-25.5<br>-25.5<br>-23.5<br>-24.5<br>-26.7<br>-29.8                                         | 1<br>1<br>1<br>Few<br>Few<br>0<br>0              | St. Ci. St, S St. St. St. St. St. St. St. St. St. S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SW-1.0<br>N-1.0<br>N-1.0                                                    | 56<br>56<br>56<br>109<br>109<br>109<br>109           | OD<br>OD<br>OD<br>NCC<br>NCC<br>NCC<br>NCC | 15 30 30 31 30 31 36 35 34.                                        |
| an. 23          | 01:00<br>08:00<br>08:30<br>09:00<br>15:30<br>16:30<br>08:30<br>15:30<br>16:30 | . 028<br>. 123<br>. 124<br>. 126<br>. 097<br>. 095<br>. 056<br>. 099<br>. 070 | $\begin{array}{c} -26.1 \\ -18.5 \\ -19.2 \\ -19.2 \\ -26.3 \\ -28.0 \\ -16.0 \\ -18.8 \\ -19.3 \end{array}$ | 2<br>1<br>Few<br>Few<br>1<br>1<br>2<br>0         | Ci. St, S. St. St. St. St. A. St. A. St. A. St. A. St. A. St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-2.7<br>SW-1.0<br>SW-1.0<br>N-1.3<br>N-1.0                                | 109<br>107<br>107<br>107<br>107<br>107<br>109<br>117 | NC<br>OD<br>OD<br>OD<br>OL<br>NL<br>NL     | -34<br>-21<br>-24<br>-26<br>-32<br>-34<br>-21<br>-24<br>-27        |
| an. 31          | 21:30<br>22:30<br>23:30<br>07:00<br>07:30<br>08:00<br>08:30<br>09:15<br>09:30 | . 050<br>. 070<br>. 037<br>. 048<br>. 046<br>. 037<br>. 037<br>. 019          | -26. 0<br>-27. 8<br>-26. 0<br>-30. 0<br>-30. 0<br>-29. 3<br>-30. 0<br>-28. 0<br>-27. 5                       | 0<br>0<br>0<br>0<br>0<br>0<br>8<br>8<br>8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N-1.0<br>N-1.0<br>N-1.0<br>NW-1.0                                           | 117<br>117<br>117<br>117<br>117<br>117<br>117<br>117 | NL<br>NL<br>OL<br>OL<br>OL<br>OL           | -30<br>-30<br>-32<br>-32<br>-33<br>-34<br>-33<br>-33<br>-33<br>-33 |
| 'eb. 1          | 16:00<br>16:30<br>17:00<br>07:15<br>07:45<br>08:15<br>15:30<br>16:00          | . 045<br>. 076<br>. 066<br>. 011<br>. 017<br>. 021<br>. 060<br>. 059          | -22.8<br>-25.2<br>-26.6<br>-29.5<br>-29.8<br>-30.0<br>-23.7<br>-25.8                                         | Few<br>Few<br>Few<br>S<br>S<br>Few<br>Few<br>Few | Ci. St.<br>Ci. St, S<br>Ci. St, S<br>Ci. St.<br>Ci. St.<br>Ci. St.<br>Ci. St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N-1.0<br>C<br>C<br>SE-1.0<br>SE-1.0<br>W-1.0<br>NW-1.0                      | 117<br>117<br>117<br>117<br>117<br>117<br>117        | OL<br>OL<br>OL<br>OL<br>OL                 | -31<br>-33<br>-33<br>-20<br>-31<br>-32<br>-30<br>-30               |
| eb. 2           | 16:30<br>15:30<br>16:00<br>16:30<br>17:30                                     | .061<br>.025<br>.062<br>.049<br>.048                                          | -24.0<br>-19.8<br>-21.0<br>-22.0<br>-24.0                                                                    | Few Few Few Few Few Few                          | Ci. St.<br>A. St.<br>Ci. St.<br>A. St.<br>Ci. St.<br>A. St.<br>Ci. St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S-1.0<br>S-1.0<br>C                                                         | 117<br>117<br>117<br>117<br>117                      | OL<br>OL<br>OL<br>OL                       | -31<br>-27<br>-29<br>-30<br>-30                                    |
| eb. 4eb. 4      | 07:30<br>08:00<br>08:30<br>16:00<br>16:30<br>17:00<br>07:15                   | . 029<br>. 008<br>. 008<br>. 068<br>. 048<br>. 030<br>. 038                   | -26. 5<br>-26. 0<br>-26. 5<br>-21. 5<br>-23. 1<br>-22. 5<br>-30. 2                                           | S<br>S<br>Few<br>Few<br>Few<br>2                 | A. St, S.<br>A. St, S.<br>A. St, S.<br>A. St, S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C<br>C<br>N-1,0<br>C<br>C<br>C<br>C<br>O<br>N-1,0                           | 117<br>117<br>117<br>117<br>117<br>117               | OL<br>OL<br>OL<br>OL<br>OL<br>OL           | -29<br>-29<br>-29<br>-30<br>-29<br>-28                             |
| eb, 8eb, 10     | 07:45<br>08:15<br>08:45<br>19:45<br>20:45<br>07:15<br>07:30<br>07:45          | .031<br>.036<br>.009<br>.054<br>.054<br>.035<br>.035                          | -29. 9<br>-30. 8<br>-27. 5<br>-17. 5<br>-18. 2<br>-36. 0<br>-35. 8<br>-35. 6                                 | 2<br>2<br>2<br>2<br>2<br>1<br>1                  | A, St = = A, St = = A, St = = St = A, | = N-1.0<br>= N-1.0<br>= NE-1.0<br>  S-4.0<br>  S-1.8<br>  S-1.0<br>  NW-1.0 | 117<br>117<br>117<br>127<br>127<br>128<br>128<br>128 | OL<br>OLL<br>NLL<br>NLL<br>NLL<br>NLL      | -34<br>-34<br>-33<br>-20<br>-22<br>-38<br>-38<br>-39               |
| eb, 18          | 08:00<br>08:20<br>07:00<br>07:15<br>07:35<br>07:55<br>08:30<br>16:15          | .035<br>.049<br>.042<br>.059<br>.027<br>.042<br>.032                          | -33. 9<br>-34. 8<br>-40. 2<br>-40. 5<br>-38. 3<br>-38. 9<br>-39. 4<br>-27. 5                                 | S = S = S = Few                                  | A. St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NW-1.0<br>NW-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0      | 128<br>128<br>130<br>130<br>130<br>130<br>130        | NL<br>NL<br>NL<br>NL<br>NL<br>NL           | -39<br>-39<br>-42<br>-43<br>-45<br>-44<br>-44                      |
| eb. 17          | 16:30<br>16:45<br>17:00<br>18:00<br>20:00<br>16:30<br>16:55<br>17:15          | . 086<br>. 094<br>. 096<br>. 089<br>. 063<br>. 076<br>. 079                   | -29. 5<br>-30. 8<br>-31. 1<br>-32. 0<br>-36. 5<br>-32. 8<br>-33. 2<br>-34. 5                                 | Few<br>Few<br>Few<br>0<br>0<br>1                 | Ci. St. Ci. St. Ci. St. St. St. St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N-1.0<br>C<br>C<br>O<br>N-1.0<br>N-1.0                                      | 130<br>130<br>130<br>130<br>130<br>131<br>131<br>131 | NL<br>NL<br>NL<br>NL<br>NL<br>NL           | -42<br>-42<br>-42<br>-43<br>-44<br>-42<br>-43                      |

## Table 4.—Outgoing radiation, Fairbanks, Alaska—Continued PART I.—0-2/10 CLOUDINESS—Continued

|                            |                                           | _                                         |                                                                                         | C                        | loudiness                              | Wind, direc-                                   |                                 | Snow surface              |                                           |
|----------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------|----------------------------------------|------------------------------------------------|---------------------------------|---------------------------|-------------------------------------------|
| Date                       | Local time                                | Q.                                        | t.                                                                                      | Amount                   | Kind                                   | tion—velocity<br>(m. p. s.)                    | Depth<br>(cm.)                  | Character<br>of top layer | Tempera-<br>ture                          |
| Feb. 18                    | 16:15<br>16:45                            | Gm. ca./<br>cm.²/mm.<br>0.070<br>.068     | -29.0<br>-31.7                                                                          | 0                        |                                        | NW-1.0<br>NW-1.0                               | 131<br>131                      | OL<br>OL                  | °C.<br>-41. 5<br>-42. 7                   |
| Feb. 21                    | 06:45                                     | . 102<br>. 063<br>. 038<br>. 040          | -33. 2<br>-33. 0<br>-28. 8<br>-28. 0                                                    | 0<br>0<br>2<br>2         | A. St                                  | N-1.0<br>N-1.0<br>N-1.0<br>N-1.0               | 131<br>131<br>131<br>131        | OL<br>OL<br>OL            | -43. 7<br>-43. 7<br>-33. 0<br>-33. 3      |
| Feb. 23                    | 17:00                                     | .030<br>.025<br>.086<br>.101              | -28.8<br>-28.0<br>-16.5<br>-17.6                                                        | 2<br>2<br>2<br>2         | A. St                                  | O<br>NW-1.0<br>N-1.0<br>C                      | 131<br>131<br>132<br>132        | OL<br>OL<br>NL<br>NL      | -33. 2<br>-33. 6<br>-26. 0<br>-25. 7      |
| Feb. 26                    | 17:15                                     | . 094<br>. 083<br>. 094<br>. 080          | -18.5<br>-20.2<br>-16.1<br>-17.0                                                        | 2<br>Few<br>Few          | St                                     | O<br>C<br>NW-1.0<br>NW-1.0                     | 132<br>132<br>132<br>132        | NL<br>NL<br>NL<br>NL      | -25. 5<br>-26. 0<br>-27. 0<br>-26. 0      |
| Mar, 1                     | 17:30<br>18:05<br>18:35<br>19:05          | . 102<br>. 101<br>. 081<br>. 078          | -18.0<br>-18.8<br>-20.2<br>-20.1                                                        | Few<br>Few<br>0          | A. St                                  | SE-1.0<br>SW-1.0<br>W-1.0<br>NW-1.0            | 132<br>132<br>132<br>132        | NL<br>NL<br>NL<br>NL      | -27. 1<br>-26. 5<br>-28. 3<br>-29. 5      |
|                            | 17:15<br>17:45<br>18:15                   | . 101<br>. 099<br>. 089<br>. 084          | -15.8<br>-16.7<br>-17.0<br>-18.2                                                        | 1<br>1<br>0              | StSt.                                  | NW-1.0<br>N-1.0<br>N-1.0<br>NW-1.3             | 135<br>135<br>135<br>135        | OL<br>OL<br>OL            | -27. 6<br>-27. 3<br>-26. 3<br>-27. 5      |
| Mar. 2                     | 18:45<br>06:15<br>06:45<br>07:15          | . 080<br>. 022<br>. 062<br>. 055          | $     \begin{array}{r}     -20.0 \\     -27.0 \\     -27.0 \\     -27.2   \end{array} $ | Few<br>Few<br>Few        | St, S                                  | N-1.0<br>NW-1.3<br>NW-1.0<br>NW-1.0            | 135<br>135<br>135<br>135        | OF<br>OF<br>OF<br>OF      | -28. 2<br>-32. 0<br>-35. 2<br>-36. 0      |
| Mar. 3                     | 17:00<br>17:15<br>17:30<br>18:15          | . 108<br>. 074<br>. 085<br>. 107          | -17. 5<br>-17. 9<br>-18. 0<br>-22. 0                                                    | Few<br>Few<br>Few        | StSt                                   | N-1.0<br>N-1.3<br>N-1.0<br>N-1.0               | 135<br>135<br>135<br>135        | OL<br>OL<br>OL            | -32. 0<br>-32. 2<br>-32. 3<br>-31. 5      |
| V                          | 06:30<br>06:45<br>07:00<br>07:15<br>07:30 | . 042<br>. 040<br>. 036<br>. 036<br>. 018 | -30.9<br>-31.0<br>-30.8<br>-30.5<br>-32.8                                               | Few<br>Few<br>Few<br>Few | StStStStStStStSt                       | NW-1.0<br>NW-1.3<br>NW-1.3<br>NW-1.0<br>SE-1.0 | 135<br>135<br>135<br>135        | OF<br>OF<br>OF            | -37. 5<br>-37. 8<br>-38. 0<br>-37. 5      |
|                            | 17:00<br>17:30<br>18:00<br>18:30          | . 115<br>. 096<br>. 107<br>. 098          | -18. 5<br>-18. 0<br>-20. 6<br>-21. 7                                                    | 0 0                      | St                                     | NW-1.0<br>N-1.0<br>N-1.3<br>N-1.0              | 135<br>135<br>135<br>135<br>135 | OL<br>OL<br>OL<br>OL      | -36. 5<br>-33. 8<br>-34. 0<br>-34. 3      |
| Mar. 8.                    | 05:30<br>05:45<br>06:00<br>06:30          | .045<br>.041<br>.036<br>.040              | -28. 0<br>-28. 0<br>-28. 2<br>-28. 9                                                    | 1<br>1<br>1<br>1         | StStStSt                               | NW-1.0<br>NW-1.0<br>NW-1.0<br>NW-1.0           | 135<br>135<br>135<br>135<br>135 | OL<br>OL<br>OL<br>OL      | -34.7<br>-32.0<br>-32.0<br>-32.3<br>-34.0 |
| Mar. 12.                   | 07:00  <br>05:10<br>05:30                 | .022<br>.038<br>.042                      | -28.7<br>-12.0<br>-12.0                                                                 | î  <br>1<br>1            | St, S<br>Ci. St                        | N-1.0<br>N-1.0<br>N-1.0                        | 135<br>136<br>136               | OD<br>OD                  | -33. 8<br>-18. 9<br>-18. 9                |
|                            | 05:50<br>06:10<br>06:30<br>17:45          | .046<br>.050<br>.031<br>.100              | -12.0<br>-12.0<br>-13.0<br>-3.3                                                         | 1<br>2<br>2<br>1         | Ci. St                                 | N-1.0<br>N-1.0<br>N-1.0<br>W-1.0               | 136<br>136<br>136<br>135        | OD<br>OD<br>OD<br>OD      | -18.8<br>-20.0<br>-20.0<br>-15.7          |
| Mar.13                     | 18. 00<br>18:15<br>18:30<br>05:30         | .095<br>.096<br>.092<br>.048              | -3.3<br>-3.6<br>-3.8<br>-15.0                                                           | Few<br>Few<br>Few<br>Few | A. St                                  | W-1.0<br>C<br>W-1.0<br>W-1.0                   | 135<br>135<br>135<br>135        | OD<br>OD<br>OD<br>OD      | -15.7<br>-15.9<br>-16.0<br>-20.8          |
|                            | 06:00<br>06:30<br>07:00<br>17:30          | .049<br>.034<br>.016<br>.109              | -15.0<br>-15.0<br>-16.5<br>-1.0                                                         | Few<br>Few<br>Few<br>Few | A. St                                  | NW-1.0<br>NW-1.0<br>N-1.0<br>W-1.0             | 135<br>135<br>185<br>134        | OD<br>OD<br>OD<br>OD      | -20.9<br>-21.2<br>-19.6<br>-14.0          |
| Mar. 14                    | 18:00<br>18:30<br>05:30<br>05:45          | .113<br>.115<br>.030<br>.032              | -1. 0<br>-2. 8<br>-13. 8<br>-14. 0                                                      | Few<br>Few               | A. St                                  | NW-1.0<br>W-1.0<br>W-1.0<br>NW-1.0             | 134<br>134<br>134<br>134        | OD<br>OD<br>OD            | -14.7<br>-15.3<br>-18.0<br>-18.2          |
| O <sub>ct. 21</sub>        | 06:00<br>06:15<br>22:00<br>22:30<br>06:00 | .035<br>.034<br>.102<br>.079              | -14.0<br>-14.0<br>-4.9<br>-4.3                                                          | 1<br>Few<br>Few          | A. St.<br>A. St.<br>Ci., S.<br>Ci., S. | N-1. 0<br>N-1. 0<br>Calm<br>W-1. 0             | 134<br>134<br>1                 | 0D<br>0G<br>0G<br>0G      | -18.6<br>-19.4<br>-6.8<br>-6.3            |
| Oct. 26                    | 19:45<br>19:30<br>21:00<br>22:15          | . 061<br>. 072<br>. 064<br>. 083<br>. 072 | -8.5<br>-5.2<br>-5.4<br>-4.4<br>-6.3                                                    | Few                      | A. Cu                                  | W-1. 0<br>Calm<br>Calm<br>Calm<br>N-1. 0       | 1 1 1 1 1                       | 00<br>00<br>00<br>00      | -11.0<br>-8.8<br>-10.0<br>-10.8           |
| Oct. 28                    | 06:15<br>20:30<br>22:30<br>22:30          | .072<br>.059<br>.076<br>.093              | -0.8<br>-10.5<br>-6.2<br>-7.0<br>-12.5                                                  |                          | A. Cu<br>A. St<br>A. St                | Calm<br>NW-1.0<br>NW-1.0                       | 1                               | 0G<br>0G<br>0G            | -11.9<br>-12.7<br>-12.4<br>-13.2          |
| Oct. 30                    | 20:00<br>22:00<br>06:15<br>23:45          | .083<br>.072<br>.068<br>.079              | -13. 1<br>-14. 7<br>-16. 6<br>-12. 8                                                    | 0                        | 8                                      |                                                | TT                              | ŏĕ<br>:::::               | -13. 5<br>-18. 0<br>-19. 0<br>-20. 0      |
| Nov. 1<br>Nov. 2<br>Nov. 3 | 06:30<br>23:00<br>23:30<br>20:00          | . 074<br>. 074<br>. 089<br>. 084          | -12.8<br>-11.1<br>-3.9<br>-4.0<br>-2.2                                                  | Few 0                    | A. St                                  | Calm<br>Calm<br>Calm<br>N-1.0<br>Calm          | 17777777777                     | 33.35                     | -17.0<br>-15.5<br>-10.9<br>-10.9          |
| Nov. 4<br>Nov. 5           | 21:30<br>22:30<br>19:30<br>20:30          | . 085<br>. 073<br>. 068<br>. 025          | -2. 2<br>-4. 9<br>-7. 0<br>-13. 3<br>-14, 2                                             | 0<br>2<br>0              | St<br>S                                | Calm<br>NW-1.0<br>Calm<br>NW-1.0               | 9                               | NL<br>NL<br>NL            | -7.7<br>-9.7<br>-12.8<br>-17.0            |
| Nov. 10<br>Nov. 12         | 20:30<br>06:00<br>19:00<br>20:00<br>20:30 | .079<br>.069<br>.064<br>.065              | -14, 2<br>-15, 7<br>-6, 0<br>-11, 3<br>-11, 2                                           |                          | St.<br>A. St.                          | Calm<br>N-1.0<br>NW-1.0<br>Calm                | 10<br>10<br>10                  | NL<br>OL<br>OL            | -16, 8<br>-23, 0<br>-12, 2<br>-18, 5      |
| Nov. 13                    | 20:30<br>23:45<br>06:30<br>19:00          | . 055<br>. 059<br>. 045                   | -11. 2<br>-14. 6<br>-16. 7<br>-17. 6<br>-17. 2                                          | Ŏ.                       | 8                                      | NW-1,0<br>Calm<br>NW-1.3<br>Calm               | 10<br>10<br>10                  | OL<br>OL<br>OL            | -18.9<br>-19.4<br>-21.0<br>-21.2          |
| Nov. 17.<br>Nov. 18.       | 06:30<br>19:30<br>23:30                   | . 067<br>. 049<br>. 055<br>. 055          | -17. 2<br>-21. 6<br>-20. 3<br>-20. 3                                                    | 0                        |                                        | Calm<br>Calm<br>Calm<br>N-1.0                  | 10<br>10<br>10<br>10            | NL<br>OL<br>OL<br>NL      | -22.0<br>-22.8<br>-23.7<br>-24.0          |

1 Snow patches.

#### Table 4.—Outgoing radiation, Fairbanks, Alaska—Continued

PART I.—0-2/10 CLOUDINESS—Continued

|                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                         | loudiness | Wind, direc-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | Snow surface                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                                                                                                                                                                                | Local time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q.                                                                                                                                                                                                                                                                                                                                  | t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Amount                                    | Kind      | tion—velocity<br>(m. p. s.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depth<br>(cm.)                                  | Character<br>of top layer               | Tempera-<br>ture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nov. 19                                                                                                                                                                                             | 06:30 23:00 06:30 22:00 23:00 06:30 23:45 20:00 23:30 22:30 23:30 23:45 06:30 21:30 21:30 22:36 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 23:15 | Gm. ca./ cm.1/mm. 0.025 0.026 0.092 0.094 0.079 0.078 0.084 0.089 1.106 0.092 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.085 0.092 0.090 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.067 0.073 0.050 0.060 0.057 0.073 0.060 0.060 0.060 0.057 0.073 0.049 0.066 0.081 | -21. 9 -14. 5 -17. 7 -17. 6 -19. 4 -20. 0 -16. 6 -11. 5 -14. 2 -17. 6 -13. 4 -20. 3 -20. 3 -20. 3 -20. 2 -16. 2 -16. 2 -20. 2 -25. 5 -24. 3 -24. 3 -26. 0 -26. 0 -26. 2 -25. 6 -26. 5 -26. 5 -27. 0 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -28. 5 -29. 4 -29. 4 -29. 4 -29. 3 -39. 0 -38. 9 -38. 9 -38. 9 -38. 9 -38. 9 -38. 9 -38. 9 -38. 9 -38. 9 -38. 9 -38. 9 -38. 9 -39. 0 -30. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Few 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | A. St     | NW-1.0<br>NW-2.7<br>NW-2.7<br>NW-2.7<br>NW-4.5<br>NW-1.8<br>W-1.<br>N-1.8<br>NW-2.7<br>N-2.7<br>NE-1.0<br>E-1.0<br>E-1.0<br>W-1.0<br>W-1.0<br>W-1.0<br>NW-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0<br>N-1.0 | 100 100 100 100 100 100 100 100 100 100         | OLL COLL COLL COLL COLL COLL COLL COLL  | *C. 21. 9 -20. 3 -21. 5 -22. 0 -24. 4 -22. 0 -20. 3 -21. 5 -24. 4 -22. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 -20. 0 |
| Jan. 1 Jan. 2 Jan. 4 Jan. 5 Jan. 6 Jan. 7 Jan. 9 Jan. 10 Jan. 11 Jan. 12 Jan. 13 Jan. 18 Jan. 24 Jan. 25 Jan. 26 Jan. 27 Jan. 28  Jan. 31 Feb. 3 Feb. 4 Feb. 5 Feb. 6 Feb. 7 Feb. 8 Feb. 10 Feb. 11 | 01:45 19:00 23:15 23:30 23:30 22:30 22:30 23:45 23:40 23:45 23:45 23:45 23:45 23:45 23:45 23:45 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .055 .054 .042 .038 .031 .019 .020 .050 .052 .079 .081 .081 .046 .066 .055 .053 .038 .038 .042 .042 .043 .049 .049 .040 .040 .040 .040 .040 .040                                                                                                                                                                                    | -38. 8 -31. 9 -29. 6 -28. 5 -28. 7 -28. 5 -28. 7 -28. 5 -28. 7 -29. 5 -20. 7 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -31. 0 -3 | 00000 W 000000000000000000000000000000    | S         | S-1.0 Calm N-1.0 Calm N-1.0 N-1.0 N-1.0 N-1.0 N-1.0 S-1.8 E-1.8 E-1.8 S-1.8 W-1.8 N-1.8 N-1.0 Calm N-1.0 S-1.0 N-1.0 S-1.0 N-1.0 S-1.0 N-1.0 S-1.0 N-1.0 N-1.0 N-1.0 S-1.0 N-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 | OCONNOCOCOCOCOCOCOCOCOCOCONNNNCOCOCOCOC | -41.0 -32.9 -30.8 -31.3 -32.0 -33.8 -22.3 -22.1 -20.5 -39.8 -41.0 -42.0 -42.0 -42.0 -42.0 -42.0 -43.0 -42.8 -42.8 -42.8 -42.8 -43.0 -44.5 -44.8 -44.5 -44.8 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6 -44.6  |

## TABLE 4.—Outgoing radiation, Fairbanks, Alaska—Continued PART I.—0-2/10 CLOUDINESS—Continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                          | loudiness | Wind, direc-                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                      | Snow surface                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Local time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amount                                     | Kind      | tion—velocity<br>(m. p. s.)                                                                                                                                                                                                                                                                                          | Depth<br>(cm.)                                                                                                                                                                                                                       | Character<br>of top layer                          | Tempera-<br>ture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Feb. 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20:30<br>23:50<br>21:00<br>23:46<br>23:00<br>21:00<br>21:05<br>21:15<br>23:00<br>23:30<br>23:45<br>20:00<br>23:46<br>23:46<br>23:30<br>23:30<br>23:46<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30<br>23:30 | Gm. ca./ cm.1/mm. 0.050 0.42 0.46 0.36 0.51 0.49 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -29. 4 -28. 5 -27. 5 -28. 1 -27. 8 -28. 5 -20. 4 -31. 2 -32. 0 -19. 5 -24. 4 -21. 4 -21. 4 -7. 5 -10. 9 -11. 6 -10. 0 -14. 8 -12. 5 -10. 1 -15. 2 -10. 1 -15. 2 -10. 1 -15. 3 -15. 8 -12. 8 -15. 8 -10. 9 -11. 6 -10. 0 -14. 8 -12. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 5 -10. 1 -15. 7 -21. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000000000000000000000000000000000000000    | S         | Calm N-1.0 Calm Calm Calm Calm N-1.0 E-1.0 N-1.0 N-1.0 N-1.0 N-1.0 Calm Calm NW-1.0 Calm Calm Calm Calm Calm Calm Calm N-1.0 Calm Calm N-1.0 Calm Calm N-1.0 Calm Calm N-1.0 N-1.0 Calm Calm N-1.0 N-1.0 | 44<br>44<br>44<br>44<br>44<br>44<br>44<br>43<br>43<br>43<br>43<br>43<br>43<br>4                                                                                                                                                      | OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO             | °C35.7 -35.0 -32.0 -32.0 -32.0 -32.2 -35.0 -32.2 -35.0 -32.2 -35.0 -26.0 -26.0 -20.2 -25.4 -19.6 -15.0 -17.5 -17.0 -17.5 -17.0 -10.4 -21.1 -22.8 -19.4 -21.1 -22.8 -26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PART II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3/10-6/10 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOUDINES                                   | 38        | ······································                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                      | · <del></del>                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Oct. 29 1936 Nov. 14  Dec. 5 Dec. 6 Dec. 24  Dec. 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02:35<br>08:00<br>08:30<br>00:30<br>09:30<br>22:00<br>22:30<br>22:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0. 101<br>. 066<br>. 065<br>. 026<br>. 052<br>. 021<br>. 020<br>. 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -8.0<br>-19.9<br>-20.0<br>-26.0<br>-31.6<br>-29.8<br>-29.8<br>-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66<br>64<br>11<br>36<br>66                 | St. Cu    | W-1.3<br>N-1.0<br>N-1.0<br>N-1.0<br>C<br>N-1.0<br>N-1.0<br>E-3.6                                                                                                                                                                                                                                                     | 3<br>28<br>28<br>28<br>28<br>41<br>41<br>41                                                                                                                                                                                          | NT<br>OT<br>OT<br>OT<br>OT<br>NT                   | -7. 8<br>-19. 9<br>-20. 2<br>-31. 2<br>-36. 8<br>-33. 4<br>-33. 3<br>-23. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Jan. 4. 1937  Jan. 8. Jan. 12. Jan. 15. Jan. 16. Jan. 16. Jan. 17. Jan. 23. Jan. 25. Jan. 25. Jan. 27. Jan. 28. Jan. 29. Feb. 11. Feb. 15. Feb. 16. Feb. 20. Feb. 19. Feb. 20. Feb. 19. Feb. 20. | 08:30<br>09:00<br>22:00<br>99:30<br>14:45<br>22:00<br>23:30<br>17:00<br>19:00<br>20:30<br>19:30<br>21:00<br>02:00<br>07:30<br>08:00<br>07:30<br>08:00<br>07:30<br>08:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30<br>18:30<br>17:00<br>17:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 035<br>. 036<br>. 034<br>. 073<br>. 120<br>. 016<br>. 019<br>. 089<br>. 088<br>. 045<br>. 090<br>. 088<br>. 046<br>. 046<br>. 046<br>. 046<br>. 062<br>. 042<br>. 032<br>. 048<br>. 062<br>. 030<br>. 055<br>. 055<br>. 055<br>. 055<br>. 055<br>. 055<br>. 055<br>. 055<br>. 055<br>. 080<br>. 080 | -20. 3<br>-20. 0<br>-19. 2<br>-18. 5<br>-19. 0<br>-17. 0<br>-17. 0<br>-17. 0<br>-1. 7<br>-11. 6<br>-22. 2<br>-21. 5<br>-22. 3<br>-22. 3<br>-22. 3<br>-22. 3<br>-22. 3<br>-22. 0<br>-30. 0 | 005624453633334334552233554455555555555555 | Ci. 8t, 8 | NV-1.0<br>E-1.0<br>NW-1.0<br>SW-5.4<br>SW-4.5<br>C<br>C<br>C<br>S-1.0<br>S-1.0<br>NE-1.0                                                                                                                                                                                                                             | 52<br>52<br>52<br>53<br>51<br>51<br>51<br>71<br>71<br>72<br>75<br>66<br>56<br>109<br>107<br>107<br>107<br>107<br>107<br>108<br>108<br>109<br>119<br>117<br>117<br>130<br>130<br>130<br>130<br>130<br>131<br>131<br>131<br>131<br>131 | HERE O CONTOCOCOCOC H H HANNININH H H H H HOSSOCOS | -25. 2<br>-26. 2<br>-21. 2<br>-23. 5<br>-27. 0<br>-19. 0<br>-10. 2<br>-5. 8<br>-10. 2<br>-30. 5<br>-30. 5<br>-30. 5<br>-30. 5<br>-32. 2<br>-33. 9<br>-33. 2<br>-33. 9<br>-21. 0<br>-32. 2<br>-33. 9<br>-33. 1<br>-21. 3<br>-21. 3<br>-21. 3<br>-36. 0<br>-37. 6<br>-38. 5<br>-38. 5<br>-38. 5<br>-38. 6<br>-38. 2<br>-38. 2<br>-38. 1<br>-38. 0<br>-38. 0 |

#### Table 4.—Outgoing radiation, Fairbanks, Alaska—Continued

#### PART II.-3/10-6/10 CLOUDINESS-Continued

|                                                                                        | -                                                                                                                 |                                                                                                                   |                                                                                                       | C                                    | loudiness                                                                                                                                                                                                                     | Wind, direc-                                                                             | Snow surface                                                      |                                                                |                                                                                                     |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Date                                                                                   | Local time                                                                                                        | Q.                                                                                                                | t.                                                                                                    | Amount                               | Kind                                                                                                                                                                                                                          | tion—velocity<br>(m. p. s.)                                                              | Depth<br>(cm.)                                                    | Character<br>of top layer                                      | Tempera-<br>ture                                                                                    |
| Mar. 4                                                                                 | 16:30<br>17:00<br>17:30<br>18:00<br>05:30<br>17:00<br>17:30<br>18:00<br>18:50                                     | Gm./cal./<br>cm.²/mm.<br>0.072<br>0.68<br>0.46<br>0.38<br>0.064<br>0.72<br>0.56<br>0.55                           | -21. 0<br>-20. 9<br>-21. 5<br>-22. 4<br>-32. 8<br>-20. 4<br>-20. 7<br>-20. 8<br>-19. 8                | 444465545                            | St                                                                                                                                                                                                                            | C<br>NE-1.0<br>C<br>C<br>C<br>SE-1.0<br>SE-1.0<br>SE-1.0<br>N-1.0                        | 131<br>131<br>131<br>135<br>135<br>135<br>135<br>135              | OL<br>OL<br>OL<br>OL<br>OL<br>OL                               | °C29. 6 -29. 7 -29. 6 -29. 4 -39. 0 -25. 0 -26. 6 -24. 3                                            |
| Mar. 14                                                                                | 05:30<br>05:50<br>06:10<br>06:30<br>07:00<br>17:15<br>17:30                                                       | . 035<br>. 032<br>. 032<br>. 018<br>. 018<br>. 064<br>. 064                                                       | -26. 1<br>-26. 3<br>-26. 8<br>-25. 7<br>-26. 0<br>2. 5<br>2. 4                                        | 33553323232323                       | A. St. A. St, S. St. S. St. S. A. St. St. A. St. St. A. St. A. St. St. A. St. St. A. St. St. St. A. St.                                                                                   | NE-2.2<br>NE-2.2                                                                         | 136<br>136<br>136<br>136<br>136<br>133<br>133                     | NL<br>NL<br>NL<br>OD<br>OD                                     | -28. 0<br>-28. 3<br>-28. 9<br>-28. 9<br>-28. 5<br>-7. 0<br>-7. 2<br>-5. 0                           |
| Oct. 21 Oct. 23 Oct. 28 Nov. 1. Nov. 9 Nov. 10 Nov. 15 Nov. 17 Nov. 22 Dec. 19 Dec. 22 | 06:15<br>22:30<br>20:00<br>19:30<br>20:30<br>22:30<br>21:00<br>20:15<br>22:45<br>23:15<br>19:30<br>23:30<br>19:45 | . 078<br>. 060<br>. 006<br>. 046<br>. 025<br>. 010<br>. 066<br>. 049<br>. 011<br>. 059<br>. 061<br>. 025<br>. 033 | -7.0<br>-6.4<br>-3.2<br>-5.0<br>-6.7<br>-11.7<br>-19.0<br>-14.0<br>-8.3<br>-13.5<br>-13.1             | 363463351354534                      | St. Cu. A. St., S. A. Cu. A. Cu. A. St. | Calm N-1.0 E-1.0 NW-1.0 NW-1.0 N-1.0 N-1.0 V-1.8 N-1.0 NE-1.0 Calm NE-1.0 S-1.0 N-1.0    | 1<br>1<br>1<br>10<br>10<br>10<br>10<br>20<br>20<br>20<br>20<br>20 | OG<br>OOG<br>OOL<br>OOL<br>NNL<br>OOC<br>OOL                   | -8.1<br>-10.4<br>-8.2<br>-8.6<br>-7.7<br>-8.8<br>-19.0<br>-21.6<br>-16.9<br>-14.9<br>-15.8<br>-25.2 |
| Jan. 14                                                                                | 20:45<br>20:30<br>01:30<br>21:00<br>23:30<br>23:00<br>23:00                                                       | . 017<br>. 035<br>. 031<br>. 050<br>. 049<br>. 051<br>. 028                                                       | -24. 9 -34. 3 -34. 5 -19. 2 -20. 7 -19. 8 -18. 2                                                      | 4<br>5<br>6<br>5<br>3<br>4           | A. St                                                                                                                                                                                                                         | Calm NW-1. 0 N-1. 0 NE-1. 0 Calm N-1. 8 SW-1. 0                                          | 25<br>20<br>20<br>20<br>20<br>20<br>38<br>38                      | OL<br>OD<br>OD<br>OD<br>OD<br>OD                               | -23. 5 -39. 0 -40. 0 -23. 5 -25. 5 -24. 3 -19. 2                                                    |
|                                                                                        |                                                                                                                   | PART III                                                                                                          | -7/10-10/10 (                                                                                         | LOUDINE                              | SS                                                                                                                                                                                                                            |                                                                                          |                                                                   | · · · · · · · · · · · · · · · · · · ·                          |                                                                                                     |
| Oct. 9                                                                                 | 05:15<br>06:30<br>05:30<br>06:15<br>05:45<br>06:20<br>03:10<br>06:15                                              | 0.080<br>.058<br>.044<br>.030<br>.011<br>.011<br>.102                                                             | -1. 0<br>-1. 2<br>-1. 0<br>5<br>-6. 0<br>-5. 8<br>-8. 0<br>-10. 2                                     | 7 7 10 10 10 10 10 10 6 8 3 5        | St                                                                                                                                                                                                                            | NE-1. 8<br>NE-1. 0<br>S-1. 0<br>S-1. 0<br>N-1. 0<br>N-1. 0<br>SW-2. 2<br>NW-1. 0         | 1<br>1<br>4<br>4<br>13<br>13<br>3<br>3                            | OD<br>OD<br>NL<br>OG<br>OG<br>NL<br>OL                         | -7.5<br>-7.5<br>-1.0<br>-14.9<br>-14.9<br>-7.8<br>-8.5                                              |
| Nov. 1. Nov. 11. Nov. 12. Nov. 18. Dec. 22. Dec. 26.                                   | 06:30<br>07:30<br>06:30<br>07:30<br>06:30<br>07:00<br>08:00<br>07:15<br>06:15<br>08:00<br>07:45<br>09:30<br>10:16 | . 042<br>.011<br>.011<br>.031<br>.028<br>.011<br>.011<br>.011<br>.011<br>.005<br>.020<br>.021                     | -10. 4<br>-6. 4<br>-5. 8<br>-4. 9<br>-7. 5<br>-8. 0<br>-14. 5<br>-18. 6<br>-18. 6<br>-24. 6<br>-41. 7 | 4  <br>  4                           | St                                                                                                                                                                                                                            | E-1.0<br>E-1.0<br>NW-1.0<br>W-1.0<br>W-1.0<br>NW-1.0<br>SE-1.0<br>E-1.0<br>C<br>E-1.0    | 5 5 5 5 5 5 5 5 5 5 28 28 28 28 29 41 42                          | OL<br>NL<br>NL<br>NL<br>NL<br>NL<br>NL<br>NL<br>OL<br>OL<br>OL | -8.7 -5.0 -5.0 -7.0 -7.0 -8.6 -13.2 -14.2 -17.5 -18.6 -23.4 -44.4 -44.5                             |
| Dec. 27                                                                                | 09:00<br>23:15<br>08:30<br>09:00<br>07:00<br>07:50<br>09:00<br>00:45<br>22:00<br>23:00                            | .011<br>.017<br>.000<br>.000<br>.010<br>.005<br>.006<br>.006<br>.003                                              | -21.7<br>-18.1<br>-11.2<br>-11.1<br>-3.0<br>-2.5<br>-2.2<br>0<br>8<br>8                               | 10<br>10<br>10<br>10<br>10<br>9<br>9 | St                                                                                                                                                                                                                            |                                                                                          | 42<br>42<br>43<br>43<br>61<br>61<br>64<br>64<br>64                | NL NL NL OL NL NL NL NL NL                                     | -22.4<br>-22.4<br>-21.8<br>-11.8<br>-1.3<br>-4.7<br>-4.5<br>-4.5<br>-4.8                            |
| Jan. 6                                                                                 | 08:00<br>08:30<br>15:00<br>15:30<br>23:30<br>01:30<br>07:30<br>09:30<br>23:30<br>24:00                            | . 038<br>. 038<br>. 042<br>. 042<br>. 007<br>. 008<br>. 002<br>. 000<br>. 001<br>. 066<br>. 065                   | 1. 1   1. 3   -19. 0   -18. 8   -17. 0   -15. 2   -14. 8   -1. 0   -1. 0   -1. 0                      | 10<br>10<br>8<br>8<br>10<br>10<br>10 | C1. St. St. C1. St. C2. St. C3. St. St. St. St. St. St. St. St. St. St                                                                                                                                                        | NE-3.6<br>NE-3.6<br>N-1.8<br>N-1.0<br>C<br>E-1.0<br>SE-1.0<br>NE-1.0<br>NE-5.4<br>NE-6.7 | 64<br>64<br>64<br>64<br>64<br>52<br>52<br>52<br>52<br>51<br>51    | NL NL NL NL NL NL NL NL ND OD                                  | -4.0 -4.2 -23.3 -23.2 -18.0 -17.8 -15.8 -15.3 -15.2 -5.1                                            |

#### Table 4.—Outgoing radiation, Fairbanks, Alaska—Continued

PART III.-7/10-10/10 CLOUDINESS-Continued

|                | 70.4                                    | T and 2 42         |                   |                  |                                                       | loudiness     | Wind, direc-<br>tion—velocity |                | Snow surface              | )<br>                                   |
|----------------|-----------------------------------------|--------------------|-------------------|------------------|-------------------------------------------------------|---------------|-------------------------------|----------------|---------------------------|-----------------------------------------|
|                | Date                                    | Local time         | Q.                | t.               | Amount                                                | Kind          | (m, p, s.)                    | Depth<br>(cm.) | Character<br>of top layer | Tempera-<br>ture                        |
|                | 1000                                    |                    | Gm. ca./          |                  | ļ .                                                   |               |                               |                |                           | • <i>c</i> .                            |
| n. 7           | 1937                                    | 09:00              | cm.1/mm.<br>0.009 | 0                | 10                                                    | 8t            | NE-1.8                        | 51             | OD                        | °C.<br>-2.<br>-2.                       |
| 0.8            |                                         | 10:00<br>10:00     | .012              | -16.0            | 10<br>10                                              | St            | N-1.8<br>N-1.0                | 51<br>53       | OD<br>NL                  | 16.                                     |
|                |                                         | 15:00<br>16:00     | .049              | -14.5<br>-10.5   | 8<br>10                                               | St            |                               | 53<br>53       | NL<br>NL                  | -16.<br>12.                             |
| a. 12          |                                         | 15:30              | .120              | -20.8            | { 2<br>5                                              | Ci. St        | 1 8-10                        | 51             | oc                        | -28                                     |
| n 19           |                                         | 00.20              | .013              | -14.0            | 10                                                    | St            | N-1.8                         | 51             | 00                        | -15                                     |
| 1. 15<br>1. 17 |                                         | 15:30<br>01:00     | .048              | -4.0<br>-11.2    | 8 9                                                   | St            | SE-1.8<br>N-1.0               | 71<br>56       | NL<br>OD                  | -6<br>-12                               |
| 1. 18          |                                         | 08:30              | .006              | -15.5            | 10                                                    | St            | NE-1.0                        | . 56           | OD                        | -16                                     |
| 1. 19          |                                         | 08:30              | .046              | -13.2            | 1 4                                                   | St            | ]] 1415-1.0                   | 91             | NL                        | -14                                     |
|                |                                         | 09:00              | . 046             | -13. 2           | $\left\{\begin{array}{c} 7\\ 3\\ 8\end{array}\right.$ | A. St         | NE-1.0                        | 91             | NL                        | -14                                     |
|                |                                         | 10:00              | .021              | -13.1            | <b>[</b> 2                                            | St            | J 14 11 - 1.0                 | 91             | NL                        | -16<br>-2                               |
|                |                                         |                    | .036              | -1.4<br>-15.0    | 10                                                    | St            |                               | 107<br>109     | NC                        | -16                                     |
| 1. 23          |                                         | 03:30<br>07:30     | .054              | -20.0<br>-11.2   | 9                                                     | A. St         | NE-5.4<br>NE-4.5              | 109<br>109     | NC<br>NO                  | -21<br>-14                              |
|                |                                         | 00.20              | .004              | -11.0            | 10                                                    | St            | E-2.7                         | 109<br>107     | NC<br>OD                  | -14<br>-31                              |
| 1. 25          |                                         | 23:00<br>24:00     | .018              | -28.3<br>-27.6   | 7<br>10                                               | A. St         | .1 0                          | 107            | do                        | -28                                     |
| 1. 26          |                                         | 07.30              | .028              | 26.0             | <b>4</b> 6                                            | A. St         | )} o                          | 107            | OD                        | 25                                      |
|                |                                         | 08:00              | .003              | -24.0            | { 4<br>6                                              | A. St         | . 1                           | 107            | OD                        | -23                                     |
| 1. 27          |                                         | 08:30              | .048              | -19.3            | } 4                                                   | Ci. St        | D NYTHE 10                    | 108            | NL                        | -24                                     |
| 1 20           |                                         | 14.90              | . 026             | -5.3             | 8                                                     | St            | SW-5.4                        | 117            | NL                        | -7                                      |
| . 30           |                                         | 07:30<br>08:00     | .011              | -21.8<br>-18.5   | 8 8                                                   | St            | NE-10                         | 117<br>117     | NL<br>NL                  | -22<br>-18                              |
| 5.8            |                                         | 07:45              | .080              | -16.0            | { <del>4</del>                                        | A. St         | -   L NTR-10                  | 127            | NL                        | -2                                      |
|                |                                         | 08:15              | .052              | 15. 5            | } 4                                                   | A. St         | NIE-10                        | 127            | NL                        | -21                                     |
|                |                                         | 08:45              | .011              | -17.5            | <b>5</b> 3                                            | StA, St       | . 1 5                         | 127            | NL                        | -21                                     |
| b. 9           |                                         | 07.15              | .011              | -20.7            | 7                                                     | St            | l) o                          | 127            | NL                        | -21                                     |
| . 10           |                                         | 15:15              | .032              | -28.6            | 7 7                                                   | St            | . 8-1.0                       | 128<br>128     | NL<br>NL                  | -3<br>-3                                |
|                |                                         | 15:30<br>16:00     | .033              | -28.4<br>-27.9   | 7                                                     | 8t            | .   SE-1.0                    | 128            | NL                        | -3                                      |
| D. 14          |                                         | 07:00<br>07:20     | .022              | -26.5<br>-26.8   | 9                                                     | A. St         | NW-1.0<br>NW-1.0              | 130<br>130     | OL                        | $-2 \\ -2$                              |
|                |                                         | 07:40              | .026              | -26.7            | 9                                                     | A. St         | .] NW-1.0                     | 130<br>130     | OL                        | -3<br>-3                                |
|                |                                         | 08:00<br>08:20     | .023              | -26.8<br>-28.0   | j . 9                                                 | A. St         | E-1.0                         | 130            |                           | -3                                      |
|                |                                         | 15:00              | .001              | -17.4            | \{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                | A. St         | _   11-1.0                    | 130            | OL                        | -1                                      |
| 0. 15          |                                         | 07:45              | .049              | -25, 5           | 12 =                                                  | A. St         | NE-10                         | 131            | NL                        | -3                                      |
|                |                                         | 08:05              | .069              | 26. 0            | 5                                                     | A. St         | - NITE IA                     | 131            | NL                        | _3                                      |
|                |                                         | 15:40              | .046              | -26.2            | 8                                                     | I A. St       | .1 0                          | 131            | NL                        | -3<br>-3                                |
|                |                                         | 16:10<br>16:40     | .031              | -26.0<br>-26.0   |                                                       | A. St         | N-1.0<br>N-1.0                | 131<br>131     | NL                        | -3                                      |
| b. 17          |                                         | 17:10              | .003              | -26.7<br>-31.6   | 9                                                     | A. St         | .  NW-1.0                     | 131<br>131     |                           | -2<br>-3                                |
| ~              | *************************************** | 07.00<br>07:15     | .009              | -31.8            | . 10                                                  | St., S        | . 0                           | 131<br>131     | NL                        | -3<br>-3                                |
|                |                                         | 07:45<br>08.15     | .019              | -32. 2<br>-33. 0 |                                                       | A. St         | NE-1.8<br>NW-1.0              | 131            | ŧ                         | -8                                      |
|                |                                         |                    | 1                 | ]                | 1) 2                                                  | St            | - {                           | 131            | i                         | 3                                       |
| 0. 18          |                                         | 08:45              | .028              | -33.4<br>-42.2   | 1 8                                                   |               | -15 14 11 - 2.0               | 131            |                           | -4                                      |
| * 10           |                                         | 06:00<br>06:30     | .030              | -44, 4           | 1                                                     | <u> </u>      | . 0                           | 131            | or                        |                                         |
|                |                                         | 07:00<br>07:30     | .026              | -45.1<br>-45.1   |                                                       | <b>=</b>      | _  0                          | 131<br>131     | OL                        | -4                                      |
| ). 10          |                                         | 08:00              | .011              | -42.7<br>-35.0   | ;                                                     |               | C<br>N-1.8                    | 131<br>131     | OL<br>OL                  | -4                                      |
| . 19           |                                         | - 06:30<br>07:00   | .042              | -35.0            | } 8                                                   | A. St         | -1 N-1.8                      | 131            | Or                        | \                                       |
|                |                                         | 07:30<br>08:00     | .050              | -33.8<br>-32.0   |                                                       | A. St         | .  N-1.0                      | 131<br>131     | OL                        | ] =                                     |
|                |                                         | 16:30              | .046              | -18.0            | 9                                                     | A. St         | _  NW-1.0                     | 131<br>131     |                           |                                         |
|                |                                         | 17:00<br>17:30     | . 044             | -18.4<br>-18.9   | ) š                                                   | A. St         | _  NW-1.0                     | 131            | OL                        |                                         |
| · 20           |                                         | _ 06:30<br>_ 06:15 |                   | -28.8<br>-25.0   |                                                       | Ci. St        |                               | 131            | TO 1                      |                                         |
|                |                                         | 06:45<br>07:15     | .038              | -25.0            | 10                                                    | St            | _ NW-1.0                      | 131            | OL<br>OL                  |                                         |
| . 04           |                                         |                    | .000              | -25. 1<br>-25. 3 | 10                                                    | Št            | N-1.0                         | 131            | OL                        | =                                       |
|                |                                         |                    |                   | -20.0<br>-17.0   | 10                                                    | R+            | SE-1.0                        | 132<br>132     | NL<br>NL                  | =                                       |
| . 25           |                                         | 16.30              |                   | -14.0            | ir a                                                  | 8t            | _   _,                        | 133            | NL                        | -:                                      |
|                | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 16. 45             | .017              | -14.1            | } A                                                   | A. St         | - N NT 1 A                    | 133            | NL                        | -:                                      |
|                | ~                                       | 17:00              |                   | -14.3            | }                                                     | St.<br>A. St. | -K NTW-10                     | 133            | 1                         | _                                       |
|                |                                         | 1                  | 1                 | 1                | . } - 7                                               | A. 8t         | - \ w_10                      | 133            | 1                         | _                                       |
|                |                                         | 17:30              |                   | 14.7             | 1} = 4                                                |               | - { "-1.0                     | 1              |                           | i                                       |
| b. 26          |                                         | 18:00              | 1                 | -15.4            | 11                                                    | Bt            | - IJ                          | 133            | i i                       | — · · · · · · · · · · · · · · · · · · · |
| ~. 40          | ,                                       | - 06:30<br>07:00   |                   | -18.0<br>-18.1   | .   9                                                 | St            |                               | 133            |                           | =i                                      |
|                |                                         | 07:80              | 1                 | -18.0            | ) r o                                                 | A. St         | -{} o                         | 138            | NL                        | -1                                      |

Table 4.—Outgoing radiation, Fairbanks, Alaska—Continued

PART III.-7/10-10/10 CLOUDINESS-Continued

| Date       | Local time              | Q.                    | t.                                              | C                                 | loudiness      | Wind, direction—velocity |                                        | Snow surface              | ·                                              |
|------------|-------------------------|-----------------------|-------------------------------------------------|-----------------------------------|----------------|--------------------------|----------------------------------------|---------------------------|------------------------------------------------|
| 2 1900     |                         | ~·                    | ··                                              | Amount                            | Kind           | (m. p. s.)               | Depth<br>(cm.)                         | Character<br>of top layer | Tempera<br>ture                                |
| 1937       |                         | Gm./ca./<br>cm.2/mm.  |                                                 |                                   |                |                          |                                        |                           | ° C.                                           |
| eb.28      | 06:15                   | 0.036                 | -22.2                                           | 9                                 | St             | NW-1.0                   | 135                                    | NL                        | -23                                            |
|            | 06:30<br>07:00          | .035                  | -22.3 $-22.5$                                   | 9                                 | St             | N-1.0<br>C               | 135<br>135                             | NL<br>NL                  | -24<br>-27                                     |
|            | 07:30                   | . 020                 | -23.0                                           | 9                                 | St             | N-1.0                    | 135                                    | NL                        | -27                                            |
|            | 17:00                   | . 055                 | -15.1                                           | $\begin{cases} 2\\ 8 \end{cases}$ | A. St          | } W-1.0                  | 135                                    | NL                        | -20                                            |
|            | 17. 20                  | . 054                 | -15, 2                                          | j 2                               | A. St          | W-1.0                    | 135                                    | NL                        | -20                                            |
|            |                         |                       |                                                 | 8                                 | St             | 15                       |                                        |                           |                                                |
|            | 17:40                   | . 050                 | -16.0                                           | { š                               | St             | NW-1.0                   | 135                                    | NL                        | -21                                            |
| ·          | 18:20                   | . 039                 | -17.4                                           | <b>5</b> 3                        | A. St.         | N-1.0                    | 135                                    | NL                        | -20                                            |
| u. 1       | 06:30                   | .003                  | -18.8                                           | 10                                | St             | N-1.0                    | 135                                    | Or                        | -18<br>-19                                     |
| 7. 4       | 06:45<br>08:00          | .003                  | -18.8<br>-32.5                                  | 10 7                              | St             | N-1.0<br>NW-1.0          | 135<br>135                             | OL<br>OL                  | -38                                            |
|            | 06:30                   | . 035                 | -31, 7                                          | 8                                 | St             | NW-1.0                   | 135                                    | OL                        | -38                                            |
|            | 07:00<br>07:30          | . 020<br>. 008        | -30.6<br>-32.3                                  | 8 8                               | St             | N-1.0<br>N-1.0           | 135<br>135                             | OL<br>OL                  | -37<br>-38                                     |
|            | 16:45                   | . 030                 | -20.5                                           | 9                                 | St             | NW-1.0                   | 135                                    | OL                        | -2                                             |
|            | 17:05                   | . 065                 | -21, 4                                          | 9                                 | 8t             | NW-1.0<br>W-1.3          | 135<br>135                             | OL<br>OL                  | -2<br>-2                                       |
| •          | 17:25<br>17:45          | . 047<br>. 066        | $ \begin{array}{c} -21.0 \\ -22.2 \end{array} $ | . 9                               | St<br>  St     | W-1.0                    | 135                                    | OL                        | -2                                             |
| . 5        | 05:45                   | .009                  | -22, 0                                          | 9                                 | St             | N-1.3                    | 135                                    | OL                        | $\begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$ |
|            | 06:15<br>06:45          | .009                  | -22, 0<br>-22, 0                                | 9 9                               | St             | N-1.0<br>S-1.0           | 135<br>135                             | OL<br>OL                  | -2                                             |
| _          | 16:30                   | .003                  | -19, 4                                          | 9                                 | St             | 8-5.4                    | 135                                    | OL                        | -ī                                             |
| . 6        | 16:45<br>17:15          | . 007<br>. 045        | -19.5<br>-20.0                                  | 9 9                               | St             | S-1.0<br>NW-1.0          | 135<br>135                             | OL<br>OL                  | $\begin{bmatrix} -2 \\ -2 \end{bmatrix}$       |
|            | 17:45                   | . 028                 | -20, 5                                          | 9                                 | St             | NW-1.0                   | 135                                    | OL                        | -2<br>-2<br>-1<br>-2<br>-2<br>-2<br>-2<br>-2   |
| 7          | 18:15<br>05:45          | . 046<br>. 026        | -20. 2<br>-23. 5                                | . 8                               | St             | W-1.0<br>S-1.0           | 135<br>135                             | OL<br>OL                  | -2                                             |
| . /        | 06:15                   | .020                  | -23. 5<br>-23. 7                                | 9                                 | St             | S-1.0                    | 135                                    | OL                        | 2                                              |
|            | 06:45                   | . 005                 | -24.0                                           | 9                                 | St             | 8-1.0                    | 135                                    | OL                        | $\begin{bmatrix} -2 \\ -2 \end{bmatrix}$       |
| . 8        | 07:15<br>16:45          | .004                  | -24.0 $-17.9$                                   | . 9                               | St             | NW-1.0<br>SW-1.0         | 135<br>135                             | OL<br>OL                  | i1                                             |
|            | 17:00                   | . 016                 | -18.0                                           | 9                                 | St             | 8W-1.0                   | 135                                    | OL                        | 1                                              |
| 4.0        | 17:20<br>17:40          | .016                  | -18.3<br>-18.7                                  | 9                                 | St             | SW-1.0<br>SW-1.0         | 135<br>135                             | OL<br>OL                  | -19<br>-19                                     |
| <u>.</u>   | 18:00                   | .011                  | -18.9                                           | 9                                 | St             | SW-1.0                   | 135                                    | ŏĽ                        | -i                                             |
| r. 9       | 18:30                   | . 044                 | -19, 4                                          | 5                                 | A. St          | N-1.0                    | 136                                    | NL                        | -24                                            |
| , 10       | 17:15                   | . 080                 | -8.0                                            | 2 7                               | StA. St        | W-1.0                    | 136                                    | ND                        | -10                                            |
|            | 17:30                   | . 080                 | -8, 2                                           | 7                                 | A. St          | N-1.0                    | 136                                    | ND                        | -17                                            |
| . 11       | 18:00<br>05:30          | .044                  | -8.5<br>-15.9                                   | 8                                 | S. St<br>A. St | N-1.3<br>SE-1.8          | 136<br>136                             | ND<br>  OD                | -17<br>-18                                     |
|            | 06:00                   | . 025                 | -15.6                                           | 8                                 | A. St          | E-1,3                    | 136                                    | OD                        | 1 -18                                          |
|            | 06:30                   | . 019                 | -15.4                                           | f 7                               | A. St          | Ja 1                     | 136                                    | OD                        | -19                                            |
|            | 17:30                   | . 060                 | -10.0                                           | 1 2                               | St             |                          | 136                                    | OD                        | -17                                            |
| *          | 18:00                   | . 044                 | -10.4                                           | 8                                 | A. St          | SE-1.0                   | 136                                    | OD                        | -1                                             |
| r. 14      | 18:00                   |                       |                                                 | 1 2                               | 8t.<br>A. St.  | K I                      |                                        | OB                        | _                                              |
| . 15       |                         | . 063                 | 2.0                                             | 5                                 | St             | NE-2.7                   | 133                                    | OD                        |                                                |
| . 10       | 05:30<br>06:00          | . 073<br>. 084        | -8.1<br>-8.0                                    | 8 8                               | Ci. St         | N-1.0<br>N-1.0           | 133<br>133                             | OD OD                     | i —1                                           |
| ,          | 06:30                   | . 072                 | -8.0                                            | . 8                               | Cl. St         | W-1,3                    | 133                                    | OD                        | l1                                             |
| ·          | 07:00<br>16:45          | . 013<br>. 101        | -9.8<br>3.9                                     | 8                                 | A. St.         | 8W-1.0<br>N-1.8          | 133<br>132                             | OD<br>OD                  | -1                                             |
|            | 17:00                   | . 106                 | 3, 7                                            | . 8                               | A. St          | N-1.8                    | 132                                    | OD                        | =                                              |
|            | 17:15<br>17:45          | . 100                 | 3, 2<br>2, 8                                    | 7                                 | A. St.         | N-1.3<br>N-2.2           | 132<br>132                             | OD                        | J                                              |
| 20         | 00:30                   | . 074                 | -5.5                                            | 8                                 | A, Cu          | Calm                     | 152                                    | or                        | =                                              |
| 24<br>25   | 06:00<br>01:15          | .056                  | -5.0<br>-3.6                                    | 10                                | St. Cu         | NE-1.0  <br>Calm         | , 1                                    | OG<br>OG                  | i                                              |
| ·          | 06:15                   | .006                  | -2.3                                            | 10                                | St. Cu         | Calm                     | 1                                      | OG                        | I                                              |
| 28         | 06:15<br>06:00          | .058                  | -10.7<br>-14.7                                  | 8                                 | A. Cu          | Calm<br>NW-1.0           | 1                                      | OG<br>OG                  | -1<br>-1                                       |
| 31         | 06:15                   | .046                  | -12.7                                           | 8                                 | A. Cu          | NW-1.0                   | T                                      | (1)                       | 1 .1                                           |
| . 1        | 23:30                   | .022                  | -4.5                                            | 10                                | St             | Calm                     | T                                      | (1)                       |                                                |
| . 2        | 06:15<br>06:15          | .019                  | -5.3                                            | 10                                | St. Cu.        | N-1.0<br>NW-1.0          | $\mathbf{T}$                           | (1)                       | 1                                              |
| . 4        | 06:10                   | 004                   | -2.7                                            | 10                                | St             | NW-1.0                   |                                        |                           |                                                |
| 7          | 06:15<br>06:05          | .025                  | -11.4<br>-11.0                                  | 10                                | St. Cu         | W-1.0<br>Calm            | 8                                      | OL OL                     | =1                                             |
| 9          | 21:30                   | .011                  | -4.2                                            | 10                                | 8t             | N-1.0                    | 10                                     | OL                        | 1                                              |
| 11         | 19:30                   | .009                  | -3.7                                            | 10                                | St             | N-1.0                    | 10                                     | OL                        | _                                              |
|            | 20:00<br>22:00          | .018                  | -4.0<br>-5.3                                    | 8                                 | A. Cu          | N-1.0<br>Calm            | 10<br>10                               | OL<br>OL                  |                                                |
| 15         | 23:45                   | , 903                 | -8.7                                            | 10                                | St             | NW-1.0                   | 10                                     | OL                        |                                                |
| . 27<br>18 | 06:45<br>23:30          | .001                  | -12.3                                           | 9 7                               | St.<br>A. St.  | SW-1.8<br>E-1.0          | 10<br>18                               | OL<br>OL                  | -1                                             |
| 20         | 23:45                   | . 084                 | 1                                               | 7                                 | A. St          | E-1.0                    | 18                                     | OL                        |                                                |
| . 20       | 22:15<br>23:00          | .018<br>.017          | -15.2<br>-15.5                                  | 10                                | St. Cu         | SE-1.0                   | 18<br>20<br>20<br>23<br>23             | NL                        |                                                |
| 21         | 23:30                   | .017                  | -15.5<br>-3.5                                   | 10                                | St. Cu         | SE-1.0<br>SW-4.5         | 20)<br>23                              | NL<br>NL                  | -1                                             |
| . 23       | 23:45<br>07:00          | .017                  | -3.3<br>-10.0                                   | 10                                | Stst           | SW-4.5<br>Calm           | 23<br>23                               | OC<br>NT                  | -10<br>-10<br>-10<br>-10                       |
| 3          | 23:30                   | 038                   | -25.8                                           | 10                                | A. St          | NE-1.0                   | 25<br>25                               | or                        | -2<br>-2<br>-1                                 |
| 15         | 23:50<br>22:30<br>23:00 | 041<br>. 009<br>. 009 | -25, 5<br>-17, 5<br>-18, 0                      | 10<br>10<br>10                    | A. St<br>A. St | E-1.0<br>N-1.0<br>Calm   | 25<br>20<br>20<br>20<br>28<br>28<br>28 | OD<br>OD                  | -1<br>-1<br>-1                                 |
| 17         | 23:45                   | 016                   | -20.0                                           | 10                                | 8t. Cu         | N-1.0                    | 20                                     | OD                        | -i<br>-i                                       |
| 22<br>29   | 00:30<br>22:00          | .002                  | -26,6                                           | 10                                | A. St          | N-1.0                    | 28                                     | NL<br>OL                  | -11<br>-21<br>-31<br>-22<br>-21                |
| . 1        | 22:00                   | .003                  | -30. 2<br>-24. 2                                | 10                                | A. St          | N-1.0<br>NW-1.0          | 28<br>34                               | NL                        | 2                                              |
|            | 22:45                   | ,003                  | 24.4                                            | 10                                | A. St          | Calm                     | 84                                     | NL                        |                                                |

<sup>&</sup>lt;sup>1</sup> Snow patches.

#### Table 5.—Outgoing radiation, Fargo, N. Dak.

#### PART I.--0-2/10 CLOUDINESS

| Date                    | T 0001 45               |                         |                         |             | Cloudiness         | Wind, direc-                     |                                                                                                                      | Snow surface              |                      |
|-------------------------|-------------------------|-------------------------|-------------------------|-------------|--------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|
|                         | Local time              | Q.                      | t.                      | Amount      | Kind               | tion—velocity<br>(m. p. s.)      | Depth<br>(cm.)                                                                                                       | Character<br>of top layer | Tempera-<br>ture     |
| Sept. 16                | 01.55                   | Gm. cal./<br>cm.2/mm.   |                         |             |                    |                                  |                                                                                                                      |                           | ° <i>C</i> .         |
|                         | 02:20                   | 0.072<br>.087<br>.073   | 3. 9<br>3. 6<br>3. 3    | 0           |                    | WNW-5.4<br>WNW-5.4<br>W-4.9      | None<br>None<br>None                                                                                                 |                           |                      |
| ept. 18                 | 01:00<br>01:28          | .082                    | 6. 1<br>3. 9            | ŏ           |                    | E-1.8<br>E-2.2                   | None<br>None                                                                                                         |                           |                      |
|                         | 02:10<br>03:00          | .071<br>.076            | 3. 2<br>2. 2            | . 0         |                    | ESE-2.7<br>ESE-2.2               | None<br>None                                                                                                         |                           |                      |
| ept. 19                 | 03:50<br>23:25<br>00:05 | .082                    | 1. 4<br>12. 7<br>10. 3  | 0<br>1      | Cu. Nb             | ESE-1.8<br>N-2.7                 | None<br>None                                                                                                         |                           |                      |
| 960. 31                 | 00:35<br>19:30          | .089<br>.089<br>.061    | 9. 2<br>-18. 2          | 1 1         | Cu. Nb.            | N-2.2<br>N-2.2<br>WNW-3.1        | None<br>None<br>5                                                                                                    | NY.                       | -20.                 |
|                         | 20:30<br>21:30          | .061                    | -18.5<br>-18.8          | ŏ           |                    | NW-4.0<br>N-2.7                  | 5<br>5                                                                                                               | NL<br>NL<br>NL            | -20.<br>-20.         |
|                         | 22:30<br>23:30          | .071<br>.082            | -20, 0<br>-22, 0        |             | =                  | NE-4.5<br>N-1.8                  | 5<br>5                                                                                                               | NL<br>NL                  | -21.<br>-23.         |
| in. 6                   | 20:30<br>21:30          | .036                    | -32.0<br>-32.0          | 1           | Ci                 | <br>= NNW-7.6                    | 24                                                                                                                   | ŅĻ                        | -33.                 |
|                         | 22:30                   | .028                    | -33. 0<br>-33. 0        | Few<br>0    |                    | = NW-3.1<br>  NW-5.4<br>  NW-4.9 | 24<br>24<br>24<br>24                                                                                                 | NL<br>NL<br>NL            | -34.<br>-34.<br>-35. |
| n.7                     | 00:30<br>01:30          | .025                    | -34. 0<br>-32. 0        | ŏ           |                    | NW-4.0<br>NW-6.3                 | 24<br>24                                                                                                             | NL<br>NL                  | -35.<br>-33.         |
|                         | 02:00<br>19:30          | .036                    | 33.0<br>29.0            | Ŏ<br>1      | A. st              | NNW-5.8                          | 24<br>25                                                                                                             | NL<br>ND                  | -34.<br>-30.         |
| n. 9                    | 20:30<br>21:30          | .039<br>.025            | -29.0<br>-30.0          | 0<br>2      | A. Cu              | N-6.7<br>N-7.2                   | 24<br>24<br>24<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                             | ND<br>ND                  | -31.<br>-32.         |
| л. 9                    | 03:00                   | .036                    | -26.0<br>-26.0          | 0           |                    | SSE-6.7<br>SSE-6.7               | 25<br>25                                                                                                             | NL<br>NL                  | 28.<br>28.           |
|                         | 03:50<br>04:25<br>20:00 | .039<br>.043<br>.056    | -26.0<br>-26.0<br>-24.0 | 0<br>0<br>0 |                    | S-5.4<br>S-4.5<br>S-5.8          | 25<br>25<br>25                                                                                                       | NL<br>NL                  | 29.<br>29.<br>29.    |
|                         | 21:00<br>22:00          | .056                    | -25. 0<br>-25. 0        | 0           |                    | S-6.7                            | 25<br>25<br>25                                                                                                       | ND<br>ND<br>ND            | -29.<br>-31.<br>-31. |
| n. 10                   | 24:00<br>02:00          | .052                    | -25. 0<br>-26. 0        | ŏ           |                    | S-5.4<br>S-4.5                   | 25<br>25                                                                                                             | ND<br>ND                  | -29.<br>-30.         |
|                         | 02:40<br>03:20          | .052<br>.052            | -28.0<br>-27.0          | 0           |                    | S-4.9<br>S-4.5                   | 25<br>25                                                                                                             | ND<br>ND                  | -31.<br>-31.         |
| n. 11                   | 04:00<br>00:30          | . 039<br>. 043          | -26.0<br>-19.4          | 0           | Cist               | S-4.5<br>S-7.6                   | 25<br>23                                                                                                             | ND<br>OC                  | 31.<br>20.           |
| n. 11<br>n. 12<br>n. 14 | 22:30<br>21:00          | .036                    | -15.6<br>-28.3<br>-28.7 | 2 0         | <b>L</b>           | N-4.5                            | 23<br>28                                                                                                             | OD<br>OD                  | -18.<br>-28.         |
|                         | 23:00                   | . 056                   | -30.4                   | 0           |                    | N-3. 1<br>N-3. 1                 | 28<br>28                                                                                                             | OD<br>OD                  | -29.<br>-30.         |
| n, 15                   | 03:00<br>03:45          | . 061<br>. 039<br>. 047 | -30.7<br>-31.7<br>-31.9 | 0<br>0<br>0 |                    | N-3. 6<br>Calm<br>Calm           | 28<br>28                                                                                                             | OD<br>OD<br>OD            | -30.<br>-32.<br>-32. |
| •                       | 21:15                   | .036                    | -26. 0<br>-24. 7        | Few 2       | A. St              | E-2.2<br>SE-3.6                  | 25<br>25<br>25<br>25<br>26<br>23<br>23<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | OD<br>OD                  | -29.<br>-27.         |
| in. 17                  |                         | .071<br>.071            | -25. 2<br>-28. 2        | 0           | Ci. St             | SW-3, 6<br>NW-3, 6               | 25<br>25                                                                                                             | OD<br>OD                  | -26.<br>-29.         |
| n. 18                   | 24:00<br>02:30          | . 056<br>. 066          | -27. 0<br>-29. 8        | 0           |                    | NW-3, 1<br>NW-1, 8               | 25<br>25                                                                                                             | OD<br>OD                  | -27.<br>-30.         |
| in. 19                  |                         | . 056<br>. 056          | -30.0<br>-29.6          | 0           |                    | NW-3. 1<br>NW-3. 1               | 25<br>25<br>25<br>25<br>25<br>25                                                                                     | OD<br>OD                  | -30.<br>-30.         |
|                         |                         | . 066<br>, 061<br>, 061 | -32.3<br>-32.8<br>-33.4 | 0           |                    | Calm<br>Calm<br>Calm             | 25<br>25                                                                                                             | OD<br>OD<br>OD            | -37.<br>-37.<br>-37. |
| an. 22                  |                         | .071<br>.066            | -33. 9<br>-34. 1        | Few<br>Few  | Ci                 | WSW-3.6<br>WSW-2.7               | 25<br>38<br>38                                                                                                       | OD<br>OD                  | -41.<br>-41.         |
| 8D. 22                  | 03:05                   | .066                    | -34. 4<br>-35. 1        | Fow 0       | ČÍ                 | WSW-3.6<br>SW-2.7                | 38<br>38                                                                                                             | OD<br>OD                  | -41.<br>-41.         |
| ~v, 1                   | 20:00                   | . 066                   | -35. 2<br>-25. 6        | 0           |                    | SW-2.7<br>SE-5.4                 | 38<br>22                                                                                                             | OD<br>OD                  | -42.<br>-28.         |
| eD, 4                   | 20:00                   | .014                    | -23. 9<br>-24. 8        | 0           |                    | SE-6.3<br>NE-3.1                 | 22<br>20<br>20<br>30                                                                                                 | OD<br>OD                  | -26.<br>-27.         |
| <sup>6</sup> D. 11      | 02:00                   | . 071<br>. 076<br>. 022 | -24. 4<br>-18. 8        | 0           |                    | 8-5.4                            | 30<br>30                                                                                                             | 00<br>00                  | -27.<br>-19.<br>-19. |
| <sup>31)</sup> , 18     | 01:55                   | .042                    | -18.8<br>-7.8<br>-7.8   | 2 2         | Ci. St.<br>Ci. St. | S-3. 6<br>S-5. 4                 | 30<br>30                                                                                                             | oc<br>oc                  | -10.<br>-9           |
| vo. 21                  | 02:00                   | .082                    | -24.7<br>-25.6          | 0           | 01. 50             | NW-3.6<br>NW-4.5                 | 15<br>15                                                                                                             |                           | -25.<br>-25.         |
| eb. 22                  | 03:00<br>01:55          | .067                    | -26, 1<br>-25, 6        | ŏ           |                    | NW-3.6<br>NW-7.6                 | 15<br>15<br>15<br>15<br>15                                                                                           | 00                        | -25.<br>-24.         |
| eb. 20                  | 02:38<br>03:27          | . 078<br>. 069          | -26.1<br>-26.1          | Few         | A. St              | NW-7.2<br>NW-8.0                 | 15                                                                                                                   | 0C                        | -25,<br>-25.         |
| eb. 28                  | 02:00<br>02:00          | . 061<br>. 094          | -18.9<br>-16.2          | 0           |                    | 8-4.9<br>NNW-2.7                 | 19<br>8                                                                                                              | NL<br>NL                  | -16,<br>-18,         |
| <sup>U</sup> C, 4       | 02:00                   | .090                    | -16.6<br>18.4           | 0 2         | A. St              | SSE-9.8                          | None<br>None                                                                                                         | NL<br>NL                  | -17.<br>18.          |
| ·· 5                    | 01:45                   | . 072<br>. 105<br>. 089 | 18. 2<br>15. 3<br>12. 9 | 1<br>0      | A. St.<br>St. Cu   | SSE-11.6<br>S-4.5<br>WSW-4.5     | None<br>None<br>None                                                                                                 |                           | 18.<br>16.           |
| ··· 7                   | 02:20                   | . 106                   | 3. 9<br>2. 1            | 0           |                    | NW-5. 4<br>NW-5. 4               | None<br>None                                                                                                         |                           | 14.<br>4.<br>2       |
| ct. 11                  | 02:50<br>03:35          | . 052<br>. 047          | 2. 1<br>2. 9<br>2. 2    | 0           |                    | WNW-3.6<br>W-1.8                 | None<br>None                                                                                                         |                           | 2.<br>3.<br>2.       |
| ·0, 12                  | 02:30                   | . 100<br>. 094          | -2.2<br>-4.0            | Few<br>Few  | St                 | NNW-6.7<br>NW-3.6                | None                                                                                                                 |                           | -2.                  |
| -0, 16 <sub></sub>      | 02:00                   | . 100<br>. 109          | 7. 7<br>8. 9            | 0           |                    | NW-3.6<br>WNW-3.1                | None<br>None                                                                                                         |                           | -7.                  |
| ct, 14ct. 15            | 02:10<br>03:15          | .094                    | -9. 2<br>-9. 8          | 0           |                    | N-1.8                            | None<br>None                                                                                                         |                           | -9.<br>-9.           |
| Oct. 16                 | 02:00<br>02:40          | . 113                   | -3.3<br>-3.8            | Few<br>Few  | A. Cu<br>A. Cu     | SE-6.3                           | None<br>None                                                                                                         |                           | -3.<br>-3.           |
| VI. 23                  | 02:00<br>02:19          | .082                    | 8<br>-4.7               | 2 2         | St. Cu             | ESE-4.9<br>SE-5.4                | None<br>None                                                                                                         |                           | -1,<br>-3.           |

#### Table 5.—Outgoing radiation, Fargo, N. Dak.—Continued

#### PART I.-0-2/10 CLOUDINESS-Continued

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С                                                                                                                                      | loudiness                                                                                                            | Wind, direc-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              | Snow surface                                                                    |                                                                                                       |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Date    | Local time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Amount                                                                                                                                 | Kind                                                                                                                 | tion—velocity<br>(m. p. s.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Depth<br>(cm.)                                                                                                                               | Ccharacter<br>of top layer                                                      | Tempera-<br>ture                                                                                      |  |
| Oct. 24 | 01:28 02:50 00:54 01:31 01:46 03:40 02:40 02:50 01:41:40 02:41 01:37 02:44 01:37 02:45 00:54 00:54 00:17 02:45 00:55 02:50 02:10 02:10 02:10 02:10 02:10 02:10 02:10 03:13 01:46 03:20 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 02:50 03:35 00:54 00:54 00:54 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 | Gm./cal./cm.2/mm. 0.076 0.076 0.078 0.079 0.070 0.067 0.071 0.081 0.081 0.083 0.096 0.097 0.047 0.081 0.084 0.060 0.010 0.088 0.000 0.010 0.088 0.000 0.001 0.086 0.000 0.001 0.006 0.001 0.006 0.001 0.006 0.001 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.009 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 | 10 -1.0 0 -1.1 1.1 6 1.5 2 2.8 8.9 9 -13.3 3 -12.2 2 -1.0 6 -1.8 9 -13.9 -11.1 1 -11.4 9 -11.1 9 -11.1 1 -11.4 9 -11.8 6 -11.8 9 -11.1 1 -11.4 9 -12.3 1 -12.3 1 -12.3 1 -12.3 1 -12.3 1 -12.3 1 -13.9 1 -12.3 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 1 -13.9 | 00000000000000000000000000000000000000                                                                                                 | A. St.  Ci.  A. Cu.  A. Cu.  A. Cu.  Ci. St.  Ci. St.  Ci. St.  Ci. St.  Ci. St.  Ci. St.  St. Cu.  St. Cu.  St. Cu. | NW-5.4<br>E-3.1<br>E-2.7<br>SW-4.5<br>NNW-7.8<br>N-7.2<br>N-1.0<br>SE-7.2<br>SE-5.4<br>N-4.0<br>N-4.5<br>N-4.0<br>N-3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | None None None None None None None None                                                                                                      | 00<br>00<br>00<br>00<br>00                                                      | °C.  01 -28 -3.5 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.3 -1.2 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 |  |
| Jan. 3  | 00:44<br>00:45<br>01.52<br>23:00<br>03:18<br>21:50<br>23:23<br>01:15<br>02:10<br>01:25<br>03:00<br>00:44<br>19:45<br>23:10<br>02:09<br>03:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 049 . 067 . 080 . 036 . 071 . 078 . 074 . 076 . 080 . 049 . 047 . 055 . 065 . 113 . 059 . 068 . 076 . 075 . 075 . 071 . 072 . 063 . 062 . 060 . 039 . 058 . 076 . 075 . 075 . 071 . 072 . 063 . 062 . 060 . 039 . 058 . 078 . 069 . 078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -11. 1 -7. 1 -8. 8 -15. 4 -17. 2 -13. 2 -15. 1 -18. 4 -20. 3 -10. 0 -9. 7 -5. 3 -6. 1 -9. 3 -2. 9 -2. 1 -9. 1 -9. 1 -23. 8 -22. 7 -24. 8 -22. 7 -24. 8 -22. 7 -22. 8 -23. 4 -22. 8 -23. 4 -22. 8 -23. 4 -24. 7 -27. 2 -27. 5 -28. 0 -28. 4 -24. 7 -27. 5 -28. 0 -28. 4 -24. 5 -28. 4 -24. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>11<br>11<br>22<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | A. St                                                                                                                | S-4.0<br>W-4.5<br>WSW-3.1<br>E-1.8<br>NE-1.3<br>N-6.3<br>N-6.3<br>N-6.3<br>NW-2.7<br>SE-10.7<br>SE-9.8<br>N-4.0<br>SE-7.2<br>SE-9.8<br>N-11.2<br>NNW-4.9<br>NW-4.0<br>NW-3.6<br>N-5.4<br>N-4.5<br>N-4.0<br>NW-2.7<br>N-4.9<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-2.7<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-4.0<br>NW-6.7<br>NW-6.7<br>NW-6.7<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0<br>W-4.0 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13 | 0C<br>0C<br>0C<br>0C<br>0C<br>0C<br>0C<br>0C<br>0C<br>0C<br>0C<br>0C<br>0C<br>0 | -10171820142014201420102010202020202020202                                                            |  |

## Table 5.—Outgoing radiation, Fargo, N. Dak.—Continued PART I.—0-2/10 CLOUDINESS—Continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Data | Tonal time                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cloudiness                                                                                                                                    |                                                                                                                                                                                                                        | Wind, direc-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Snow surface                                                                                                                           |                                                                      |                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date | Local time                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amount                                                                                                                                        | Kind                                                                                                                                                                                                                   | tion—velocity<br>(m. p. s.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depth<br>(em.)                                                                                                                         | Character<br>of top layer                                            | Tempera-<br>ture                                                             |
| Feb. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1938 | 01:49 02:53 23:47 00:35 01:18 23:42 00:55 23:20 21:30 22:50 21:30 22:44 01:44 19:43 20:39 22:50 01:07 23:33 22:47 03:28 22:47 03:28 03:20 03:28                                                                                                                                                                                                                                                                                                                 | Gm. ca./ cm.3/mm. 0.051 0.052 0.052 0.052 0.053 0.079 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 | -17. 7 -12. 0 -11. 1 -10. 8 -12. 1 -12. 8 -12. 2 -26. 3 -22. 8 -24. 9 -20. 4 -21. 3 -21. 3 -23. 8 -24. 9 -20. 4 -21. 3 -21. 3 -23. 8 -24. 9 -20. 4 -21. 3 -25. 8 -26. 2 -15. 8 -9. 6 -9. 1 -4. 6 -9. 1 -11. 2 -1. 4 -13. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>2<br>2<br>2<br>0<br>0<br>0<br>0<br>0<br>2<br>2<br>2<br>Few<br>Few<br>Few<br>Few<br>Few | St                                                                                                                                                                                                                     | BSE-5.8<br>SE-6.7<br>W-3.6<br>SW-2.7<br>S-4.0<br>SE-6.3<br>SE-6.7<br>W-4.5<br>S-1.8<br>Calm<br>N-2.2<br>N-1.3<br>N-2.7<br>SW-1.8<br>NW-7.6<br>NW-8.5<br>NW-8.5<br>NW-4.0<br>W-7.2<br>W-6.7<br>SW-4.5<br>WSW-5.4<br>SW-2.2<br>WE-2.2<br>WSW-4.5<br>WSW-4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>25<br>25<br>25<br>25<br>25<br>23<br>16<br>10<br>10<br>10<br>8<br>8<br>8<br>5<br>5<br>5 | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00    | °C18.1 -1313.1 -13.1 -13.1 -13.1 -141326272121212121141576101011112.         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PART II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3/10-6/10 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOUDINES                                                                                                                                      | SS                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        | 1                                                                    | 1                                                                            |
| Dec, 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1936 | 18:15                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                             | Oi. St                                                                                                                                                                                                                 | NNW-3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                      | ОД                                                                   | -18.9                                                                        |
| an, 1 an, 7 an, 7 an, 12 cet, 23 cet, 25 cet, 26 cet, 26 cet, 26 cet, 26 det, 27 det, 26 det, 27 det, 26 det, 27 det, 26 det, 27 det, | 1937 | - 00:30 - 01:30 - 04:20 - 05:00 - 22:00 - 05:00 - 22:30 - 01:12 - 01:12 - 01:12 - 03:20 - 05:00 - 05:99 - 01:54 - 00:59 - 01:54 - 00:59 - 11:53 - 22:43 - 21:53 - 22:41 - 19:52 - 19:45 - 22:41 - 19:52 - 19:45 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 19:52 - 22:41 - 22:55 | . 076 . 066 . 004 . 005 . 019 . 014 . 006 . 016 . 052 . 060 . 068 . 038 . 047 . 041 . 045 . 069 . 030 . 030 . 016 . 004 . 020 . 047 . 016 . 034 . 044 . 016 . 013 . 072 . 075 . 025 . 115 . 069 . 069 . 069 . 067 . 076 . 076 . 076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -22. 3<br>-22. 7<br>-32. 0<br>-32. 0<br>-32. 0<br>-32. 0<br>-29. 0<br>-19. 6<br>-14. 4<br>-4. 0<br>-7. 9<br>2. 3<br>2. 8<br>-10. 2<br>-12. 8<br>-112. 8<br>-12. 8<br>-112. 5<br>-12. 3<br>-17. 1<br>-15. 4<br>-117. 1<br>-15. 4<br>-117. 1<br>-15. 4<br>-112. 7<br>-12. 3<br>-12. 8<br>-12. 8<br>-13. 1<br>-15. 4<br>-12. 7<br>-12. 3<br>-13. 1<br>-15. 4<br>-12. 7<br>-12. 3<br>-13. 1<br>-14. 1<br>-15. 4<br>-17. 1<br>-15. 4<br>-12. 7<br>-12. 3<br>-13. 1<br>-14. 1<br>-15. 4<br>-17. 1<br>-15. 4<br>-17. 1<br>-17. 1 | 333546233443443364433644533444336445                                                                                                          | A. St. Cl. St. Cl. St. St. St. St. St. Cl. St. | NE-1.3 NW-6.7 NW-6.7 NW-4.5 N-8.9 S-4.9 E-3.1 SSE-6.3 SW-5.4 SW-5.4 SW-5.4 SE-4.5 SE-4.5 SE-4.5 SE-4.5 SE-4.5 SE-11.6 SE-4.0 ESE-3.6 ESE-3.1 SSE-3.6 SE-3.1 SSE-3.6 SE-3.1 SSE-3.6 SE-3.1 SSE-3.6 SSE-3.1 SSE-3.6 SSE- | \$ 5 5 244 244 244 245 255 233 233 None None None None 10 10 10 10 10 10 10 10 10 10 10 10 10                                          | NL<br>NL<br>NL<br>ND<br>OC<br>OC<br>OC<br>OC<br>OC<br>OC<br>OC<br>OC | 1.<br>2.                                                                     |
| Dec. 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1936 | 20:15                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.022<br>.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -19. 0<br>-19. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98                                                                                                                                            | Ci. St                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                                                                                                                                    |                                                                      | -19<br>-19                                                                   |
| -u. /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1937 | 22:20<br>23:30<br>02:30<br>03:00                                                                                                                                                                                                                                                                                                                                                                                                                                | .045<br>.004<br>.028<br>.002<br>.002<br>.000<br>.002<br>.002<br>.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -18.0<br>-17.2<br>-22.2<br>-32.0<br>-32.0<br>-28.0<br>-28.0<br>-27.0<br>-27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8<br>3<br>7<br>8<br>8<br>8<br>9<br>10<br>7<br>7<br>7<br>10<br>10                                                                              | Ci. 8t                                                                                                                                                                                                                 | N-5.4<br>N-5.4<br>NNE-1.3<br>NW-4.5<br>NW-4.0<br>N-7.6<br>N-6.7<br>N-7.2<br>N-8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5<br>24<br>24<br>24<br>25<br>25<br>25<br>25<br>25                                                                                      | OD<br>OD<br>NL                                                       | -19.<br>-19.<br>-19.<br>-23.<br>-32.<br>-28.<br>-29.<br>-28.<br>-27.<br>-27. |

#### Table 5.—Outgoing radiation, Fargo, N. Dak.—Continued

#### PART III.-7/10-10/10 CLOUDINESS-Continued

| _                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                            | loudiness | Wind, direc-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Snow surface                                                                                                   |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date                 | Local time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q.                                                                                                      | t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Amount                                       | Kind      | Wind, direction—velocity (m. p. s.)  S-6.3 8-4.5 8E-5.8 8E-7.2 8E-6.3 8-2.2 8E-4.5 8-2.2 8E-4.5 N-3.4 N-5.4 N-5.4 N-5.4 N-4.5 E-1.0 8SE-4.5 8SE-4.5 8SE-4.5 8SE-4.6 8SE-4.5 8SE-6.7 8SE-6.7 8SE-6.7 8SE-6.7 8SE-6.7 8SE-6.8 NN-10.7 N-0.3 NNW-5.8 NN-10.8 NN-1 | Depth<br>(cm.)                                                                                                 | Character<br>of top layer                    | Tempera-<br>ture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Jan. 11.             | 02:30 03:15 23:00 01:30 03:36 01:30 02:30 02:30 02:30 02:30 02:30 02:30 02:30 02:30 02:40 01:00 02:20 02:30 03:10 01:58 02:46 02:46 02:46 02:45 02:25 02:50 02:30 03:40 02:46 02:45 02:25 02:50 02:30 03:40 02:46 02:45 02:50 02:40 02:40 02:45 00:53 02:45 02:50 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 02:40 | Gm./ca./ cm./ca./ cm./ca./ cm./a/mm. 0.016004 .022014 .006 .005 .022 .000 .010 .010 .010 .010 .010 .010 | -19.3 -18.3 -23.1 -20.7 -20.4 -20.0 -26.7 -26.1 -23.2 -23.1 -23.2 -23.1 -23.8 -22.8 -22.3 -23.1 -23.8 -21.0 -10.1 -21.0 -10.1 -10.1 -10.1 -10.1 -11.7 -2.0 -3.8 -11.4 -11.6 -11.7 -1.1 -11.8 -11.9 -10.2 -10.1 -11.9 -10.2 -10.1 -11.9 -10.2 -10.1 -10.4 -11.9 -10.2 -10.1 -10.4 -11.9 -10.2 -10.1 -10.4 -11.9 -10.2 -10.1 -10.4 -11.9 -10.2 -10.1 -10.4 -10.7 -11.8 -11.9 -10.2 -10.1 -10.4 -10.7 -11.8 -11.9 -10.2 -10.1 -10.4 -10.7 -11.8 -11.9 -10.2 -10.1 -10.4 -10.7 -11.8 -11.9 -10.2 -10.1 -10.7 -10.4 -10.7 -10.7 -10.4 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 | 7 10 10 10 10 10 10 10 10 10 10 10 10 10     | A. St     | S-4.5 SE-5.8 SE-6.8 SE-7.2 SE-6.8 SE-6.2 SE-4.5 SE-6.2 SE-4.5 SE-5.4 NN-3.1 NN-3.1 NN-4.5 NN-4.0 SSE-3.6 SSE-4.5 SSE-6.7 ESE-6.7 ESE-6.7 ESE-6.7 ESE-6.3 SNW-8.9 NNW-0.8 NN-7.2 SW-3.6 NNW-5.8 NNW-5.8 NNW-5.8 NNW-5.4 NNW-5.4 SE-7.7 SSE-7.6 SSW-4.9 SSW-4.9 SSW-3.6 NNE-4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23<br>23<br>23<br>28<br>38<br>38<br>25<br>25<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 | OL<br>OL<br>OL<br>NL<br>NL<br>NL<br>NL<br>OL | C28.9 4.0 -22.2 8.4 -22.2 8.4 -22.2 8.5 -22.2 8.5 -22.2 8.5 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22.2 8.6 -22 |  |
| Jan. 2               | 19:50<br>21:45<br>21:43<br>22:30<br>20:55<br>21:00<br>21:55<br>02:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 028<br>. 011<br>. 030<br>. 024<br>. 005<br>. 004<br>. 004                                             | -12.3<br>-11.8<br>-6.7<br>-6.6<br>-15.3<br>-15.3<br>-14.8<br>-16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | A. St     | SSE-7. 6<br>SE-5. 4<br>W-4. 5<br>E-2. 7<br>E-2. 7<br>NE-2. 2<br>NE-1. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                   | 00<br>00<br>00                               | -12.2<br>-8.5<br>-7.5<br>-15.3<br>-15.3<br>-14.8<br>-16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Jan. 14.<br>Jan. 15. | 19:53<br>20:47<br>22:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 038<br>. 010<br>. 049                                                                                 | -10.6<br>-4.1<br>-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>10<br>8                                 | A. Cu     | .  N-5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>10<br>10                                                                                                 | 00<br>00                                     | -11.2<br>-4.6<br>-4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

#### Table 5.—Outgoing radiation, Fargo, N. Dak.—Continued

#### PART III.-7/10-10/10 CLOUDINESS-Continued

|                                                                   |                                                                      |                                                                       |                                                                    |                                                       |           | ,                                                                                 |                                              |                                                                | <del></del>                                                                                |
|-------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|-----------|-----------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| ·                                                                 | ļ                                                                    |                                                                       |                                                                    | С                                                     | loudiness | Wind, direc-                                                                      |                                              | Snow surface                                                   |                                                                                            |
| Date .                                                            | Local time                                                           | Q.                                                                    | t.                                                                 | Amount                                                | Kind      | tion—velocity<br>(m. p. s.)                                                       | Depth<br>(cm.)                               | Character<br>of top layer                                      | Tempera-<br>ture                                                                           |
| Jan. 17                                                           | 00:59<br>01:50<br>02:53<br>02:41                                     | Gm./cal./<br>cm.³/mm.<br>0.015<br>.016<br>.018                        | -6.3<br>-7.8<br>-8.9<br>-5.5                                       | 10<br>10<br>10<br>10                                  | StStSt    | NW-8.5<br>NW-6.7<br>NW-7.6<br>S-6.7                                               | 13<br>13<br>13<br>13<br>13                   | NL<br>NL<br>NL<br>OC                                           | °C.<br>-6.7<br>-7.6<br>-8.6<br>-6.2                                                        |
| Jan, 30                                                           | 03:40<br>21:01<br>22:48<br>00:32<br>01:52<br>02:59                   | . 016<br>. 004<br>. 007<br>. 006<br>. 004<br>. 005                    | -5.1<br>-5.7<br>-6.2<br>-6.3<br>-6.6<br>-6.7<br>-6.9               | 10<br>10<br>10<br>10<br>10<br>10<br>10                | 8t        | S-5. 4<br>NE-2. 2<br>E-2. 7<br>E-2. 7<br>E-4. 0<br>E-4. 0                         | 13<br>13<br>13<br>13<br>13<br>13<br>13       | 00<br>00<br>00<br>00<br>00<br>00                               | -5.7<br>-6.1<br>-6.3<br>-6.4<br>-6.2<br>-6.6<br>-6.8                                       |
| Jan. 23<br>Jan. 24<br>Jan. 27                                     | 19:47                                                                | . 021<br>. 021<br>. 032<br>. 034<br>. 014<br>. 015                    | -3. 1<br>-1. 2<br>-4. 3<br>-6. 6<br>-9. 6<br>-18. 1<br>-17. 4      | 7<br>10<br>10<br>10<br>10<br>10<br>10                 | A, Cu     | N-8.0<br>N-11.2<br>N-14.3<br>N-11.6<br>SE-9.8                                     | 13<br>13<br>13<br>13<br>13<br>10<br>10       | 00000000000000000000000000000000000000                         | -4.5<br>-1.8<br>-4.5<br>-5.8<br>-9.5<br>-18.1<br>-17.1<br>-15.6                            |
| Jan. 29<br>Feb. 1<br>Feb. 2                                       | 02:00<br>03:44<br>19:50<br>23:41<br>00:50<br>02:51<br>23:46<br>00:41 | . 004<br>. 005<br>. 011<br>. 011<br>. 009<br>. 013<br>. 074           | -15. 1<br>-13. 2<br>-15. 8<br>-16. 0<br>-22. 3<br>-12. 7<br>-12. 4 | 10<br>10<br>10<br>10<br>10<br>10<br>7<br>10           | A. St     | SE-12.5<br>SSE-10.7<br>N-6.3<br>N-4.5<br>NE-4.9<br>SE-5.4<br>ESE-8.5<br>E-6.7     | 10<br>10<br>10<br>10<br>10<br>10<br>10       | 00<br>00<br>00<br>00<br>00<br>00<br>00                         | -15.3<br>-13.9<br>-14.4<br>-16.1<br>-16.3<br>-22.6<br>-15.4<br>-14.8                       |
| Feb. 8.<br>Feb. 9.<br>Feb. 15.<br>Feb. 16.<br>Mar. 7.<br>Mar. 10. | 03:25<br>21:17<br>01:45<br>21:40<br>19:42                            | . 004<br>.008<br>.010<br>.013<br>.013<br>.021<br>.012<br>.014<br>.021 | -12.4 -13.9 -16.5 -20.2 -23.7 -22.8 -20.4 -19.7 -3.8               | 10<br>10<br>10<br>10<br>8<br>8<br>10<br>10<br>10<br>9 | St        | N-6.7<br>N-8.0<br>N-9.8<br>N-2.2<br>N-5.8<br>N-5.4<br>NNE-4.9<br>NNE-4.0<br>E-2.2 | 10<br>10<br>13<br>13<br>20<br>20<br>18<br>18 | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | -14.3<br>-14.1<br>-13.4<br>-15.7<br>-20.7<br>-22.7<br>-21.8<br>-18.7<br>-18.3<br>-4.3<br>9 |